Skip to main content
Log in

Derivation of a simplified relation for assessing aortic root pressure drop incorporating wall compliance

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Aging and some pathologies such as arterial hypertension, diabetes, hyperglycemia, and hyperinsulinemia cause some geometrical and mechanical changes in the aortic valve microstructure which contribute to the development of aortic stenosis (AS). Because of the high rate of mortality and morbidity, assessing the impact and progression of this disease is essential. Systolic transvalvular pressure gradient (TPG) and the effective orifice area are commonly used to grade the severity of valvular dysfunction. In this study, a theoretical model of the transient viscous blood flow across the AS is derived by taking into account the aorta compliance. The derived relation of the new TPG is expressed in terms of clinically available surrogate variables (anatomical and hemodynamic data). The proposed relation includes empirical constants which need to be empirically determined. We used a numerical model including an anatomically 3D geometrical model of the aortic root including the sinuses of Valsalva for their identification. The relation was evaluated using clinical values of pressure drops for cases for which the modified Gorlin equation is problematic (low flow, low gradient AS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A d :

Flow cross-sectional area downstream of the stenosis, cm2

A u :

Flow cross-sectional area upstream of the stenosis, cm2

a :

Vessel radius, cm

C :

Vessel compliance, cm/Barye

E :

Young’s modulus of the vessel, Barye

EOA:

Flow effective orifice area, cm2

\(\vec{F}\) :

Body and surface force vector, g cm/s2

\(g(\frac{{A_{\text{d}} }}{\text{EOA}})\) :

Function of the areas ratio, dimensionless

h :

Vessel thickness, cm

k c :

Empirical constant in the convective pressure loss term, dimensionless

k p :

Empirical constant in the pressure loss term due to the vessel compliance, Barye

k v :

Empirical constant in the viscous pressure loss, dimensionless

L 23 :

Distance between two referenced positions downstream and upstream of the stenosis, cm

\(\vec{n}\) :

Outward pointing normal unit vector to the body surface, dimensionless

p :

Blood flow pressure, dyn/cm2

Q :

Volume flow rate, cm3/s

u :

Blood flow velocity, cm/s

\(\vec{V}\) :

Fluid velocity vector, cm/s

λ :

Parameter defined as \(\frac{{L_{23} }}{{A_{\text{d}} }} + \int\limits_{{x_{1} }}^{{x_{2} }} {\frac{{{\text{d}}x}}{A}}\), cm−1

ζ :

Empirical constant, dimensionless

ρ :

Blood density, g/cm3

μ :

Dynamic viscosity of blood, g/cm s

v :

Kinematic viscosity of blood, cm2/s

ω :

Heart frequency, Hz

τ :

Vessel wall shear stress, dyn/cm2

p :

Pressure gradient across stenosis, dyn/cm2

p C :

Convective component of the pressure gradient across stenosis, dyn/cm2

p Co :

Pressure gradient component due to the vessel distensibility, dyn/cm2

p L :

Pressure gradient component due to the local inertia, dyn/cm2

p V :

Viscous component of the pressure gradient across stenosis, dyn/cm2

σ ij :

Cauchy stress tensor, dyn/cm2

V i :

Material velocity vector, cm/s

V MJ :

Framework velocity, cm/s

C :

Stiffness tensor of the vessel wall material, dyn/cm2

ε :

Strain tensor of the vessel wall material, dimensionless

V f :

Vector containing the fluid unknowns

V s :

Vector containing the solid unknowns

Γfs :

Common solid–fluid interface

References

  1. Ask P, Loyd D, Wranne B (1986) Regurgitant flow through heart valves: a hydraulic model applicable to ultrasound Doppler measurements. Med Biol Eng Comput 24:643–646

    Article  CAS  PubMed  Google Scholar 

  2. Baumgartner H (2012) Low-flow, low-gradient aortic stenosis with preserved ejection fraction still a challenging condition. J Am Coll Cardiol 60:1268–1270

    Article  PubMed  Google Scholar 

  3. Baumgartner H, Stefenelli T, Niederberger J, Schima H, Maurer G (1999) “Overestimation” of catheter gradients by Doppler ultrasound in patients with aortic stenosis: a predictable manifestation of pressure recovery. J Am Coll Cardiol 33:1655–1661

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Israel A, Greville TNE (2003) Generalized inverses: theory and applications, 2nd edn. Springer, New York

    Google Scholar 

  5. Bermejo J, Antoranz JC, Burwash IG, Alvarez JL, Moreno M, Garcia-Fernandez MA, Otto CM (2002) In-vivo analysis of the instantaneous transvalvular pressure difference-flow relationship in aortic valve stenosis: implications of unsteady fluid-dynamics for the clinical assessment of disease severity. J Heart Valve Dis 11:557–566

    PubMed  Google Scholar 

  6. Bonow RO, Carabello B, De Leon AC Jr, Edmunds LH Jr, Fedderly BJ, Freed MD, Gaasch WH, McKay CR, Nishimura RA, O’Gara PT, O’Rourke RA, Rahimtoola SH, Ritchie JL, Cheitlin MD, Eagle KA, Gardner TJ, Garson A Jr, Gibbons RJ, Russell RO, Ryan TJ, Smith SC Jr (1998) Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation 98:1949–1984

    Article  CAS  PubMed  Google Scholar 

  7. Cannon SR, Richards KL, Crawford M (1985) Hydraulic estimation of stenotic orifice area: a correction of the Gorlin formula. Circulation 71:1170–1178

    Article  CAS  PubMed  Google Scholar 

  8. Capelli C, Bosi GM, Cerri E, Nordmeyer J, Odenwald T, Bonhoeffer P, Migliavacca F, Taylor AM, Schievano S (2012) Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput 50:183–192

    Article  CAS  PubMed  Google Scholar 

  9. Carmody CJ, Burriesci G, Howard IC, Patterson EA (2006) An approach to the simulation of fluid–structure interaction in the aortic valve. J Biomech 39:158–169

    Article  CAS  PubMed  Google Scholar 

  10. Choudhury N, Bouchot O, Rouleau L, Tremblay D, Cartier R, Butany J, Mongrain R, Leask RL (2009) Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Am J Cardiovasc Pathol 18:83–91

    Article  Google Scholar 

  11. Clark C (1978) Relation between pressure difference across the aortic valve and left ventricular outflow. Cardiovasc Res 12:276–287

    Article  CAS  PubMed  Google Scholar 

  12. de Tullio MD, Afferrante L, Demelio G, Pascazio G, Verzicco R (2011) Fluid–structure interaction of deformable aortic prostheses with a bileaflet mechanical valve. J Biomech 44:1684–1690

    Article  PubMed  Google Scholar 

  13. Dettmer W, Perić D (2006) A computational framework for fluid–structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41):5754–5779

    Article  Google Scholar 

  14. Dobrin PB (1991) Poststenotic dilatation. Surg Gynecol Obstet 172:503–508

    CAS  PubMed  Google Scholar 

  15. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1):95–114

    Article  Google Scholar 

  16. Fernández MA, Gerbeau JF, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int J Numer Meth Eng 69:794–821

    Article  Google Scholar 

  17. Fung Y (1998) Biomechanics: circulation, 2nd edn. Springer, New York

    Google Scholar 

  18. Garcia D, Pibarot P, Durand LG (2005) Analytical modeling of the instantaneous pressure gradient across the aortic valve. J Biomech 38:1303–1311

    Article  PubMed  Google Scholar 

  19. Gerhart PM (1992) Fundamentals of fluid mechanics, 2nd edn. Addison-Wesley Pub. Co., Reading

    Google Scholar 

  20. Gorlin R, Gorlin SG (1951) Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts I. Am Heart J 41:1–29

    Article  CAS  PubMed  Google Scholar 

  21. Hallquist JO (2006) LS-DYNA theory manual. Livermore Software Technology Corporation, CA, USA, ISBN 0-9778540-0-0

  22. Heinrich R, Fontaine A, Grimes R, Sidhaye A, Yang S, Moore K, Levine R, Yoganathan A (1996) Experimental analysis of fluid mechanical energy losses in aortic valve stenosis: importance of pressure recovery. Ann Biomed Eng 24:685–694

    Article  CAS  PubMed  Google Scholar 

  23. Idelsohn SR, Del Pin F, Rossi R, Oñate E (2009) Fluid–structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80:1261–1294

    Article  Google Scholar 

  24. Krishnamurthy G, Itoh A, Bothe W, Swanson JC, Kuhl E, Karlsson M, Craig Miller D, Ingels NB Jr (2009) Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J Biomech 42:1909–1916

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kunzelman KS, Einstein DR, Cochran RP (2007) Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos Trans R Soc Lond B Biol Sci 362:1393–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Livermore Software Technology Corporation (LSTC) (2013) Theory manual incompressible fluid solver in LS-DYNA, Livermore, CA

  27. Miller DS (1990) Internal flow systems. BHRA (Information Services), Cranfield

    Google Scholar 

  28. Nobari S, Mongrain R, Leask R, Cartier R (2013) The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: a fluid–structure interaction study. Med Biol Eng Comput 51(8):923–936

    Article  CAS  PubMed  Google Scholar 

  29. Olsen MH, Wachtell K, Bella JN, Liu JE, Boman K, Gerdts E, Papademetriou V, Nieminen MS, Rokkedal J, Dahlof B, Devereux RB (2004) Effect of losartan versus atenolol on aortic valve sclerosis (a LIFE substudy). Am J Cardiol 94:1076–1080

    Article  CAS  PubMed  Google Scholar 

  30. Olsen MH, Wachtell K, Bella JN, Gerdts E, Palmieri V, Nieminen MS, Smith G, Ibsen H, Devereux RB, LIFE substudy (2005) Aortic valve sclerosis relates to cardiovascular events in patients with hypertension (a LIFE substudy). Am J Cardiol 95:132–136

    Article  PubMed  Google Scholar 

  31. Otto CM (2004) Why is aortic sclerosis associated with adverse clinical outcomes? J Am Coll Cardiol 43:176–178

    Article  PubMed  Google Scholar 

  32. Pappano AJ, Wier WG (2012) Cardiovascular physiology: mosby physiology monograph series, 10th edn. Elsevier Mosby, Philadelphia

    Google Scholar 

  33. Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R (2006) Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact CardioVasc Thorac Surg 5:373–378

    Article  PubMed  Google Scholar 

  34. Ross J Jr (1985) Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy. J Am Coll Cardiol 5:811–826

    Article  PubMed  Google Scholar 

  35. Schlichting H (1960) Boundary layer theory, 4th edn. McGraw Hill, New York

    Google Scholar 

  36. Shavelle D, Otto C (2000) Aortic stenosis. In: Crawford MH, Dimarco JP (eds) Cardiology. Mosby, London, pp 9.1–9.10

  37. Slørdahl SA, Solbakken JE, Piene H, Angelsen BAJ, Rossvoll O, Samstad SO (1990) Quantification of aortic regurgitation by Doppler echocardiography: a new method evaluated in pigs. Med Biol Eng Comput 28:300–305

    Article  PubMed  Google Scholar 

  38. Thubrikar M, Piepgrass WC, Bosher LP, Nolan SP (1980) The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ Res 47:792–800

    Article  CAS  PubMed  Google Scholar 

  39. Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses I. Steady flow. J Biomech 6:395–410

    Article  CAS  PubMed  Google Scholar 

  40. Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses II. Unsteady flow. J Biomech 6:547–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the support of McGill Engineering Doctoral Award (MEDA), Natural Sciences and Engineering Research Council of Canada (NSERC) and Montreal Heart Institute (MHI). We would also like to thank Mr. Facundo Del Pin, a scientist at Livermore Software Technology Corporation for developing the ICFD solver. This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaire Mongrain.

Appendix

Appendix

For a distensible wall with fixed EOA, the flow disturbance downstream of the stenosis causes a change in the cross-sectional area by an amount dA.Then, for the compliant vessel, the convective pressure loss becomes:

$$\Delta p_{\text{C}} = \frac{{\rho Q^{2} }}{{2A_{\text{d}}^{2} }}\left( {\frac{{A_{\text{d}} + {\text{d}}A}}{\text{EOA}} - 1} \right)^{2}$$
(32)

If the vessel is modeled with a thin-walled cylinder obeying Hooke’s law (assuming physiological deformation), since the longitudinal stress is much smaller that the circumferential one, then

$$e_{{\uptheta \uptheta }} = \frac{{{\text{d}}a}}{a} = \frac{{a{\text{d}}p}}{Eh}$$
(33)

where e θθ is the circumferential strain, a the radius of the vessel, a 0 the initial radius, E the Young’s modulus of the wall material, and h the wall thickness. Then, the cross-sectional variation in Eq. (32) can be expressed as:

$${\text{d}}A = \frac{{2A_{\text{d}} \sqrt {A_{\text{d}} } }}{\sqrt \pi }\frac{{{\text{d}}p}}{Eh}$$
(34)

Hence, by expanding Eq. (32), neglecting the small higher-order terms and using Eqs. (33) and (34), the effect of the wall compliance in pressure loss can be expressed as:

$$\Delta p_{\text{C}} =\Delta p_{\text{Rigid}} +\Delta p_{\text{Co}} = \frac{{\rho Q^{2} }}{2}\left[ {\left( {\frac{1}{\text{EOA}} - \frac{1}{{A_{\text{AO}} }}} \right)^{2} + \frac{{4\sqrt {A_{\text{d}} } {\text{d}}p}}{{Eh{\kern 1pt} {\kern 1pt} \sqrt \pi }}\left( {\frac{1}{\text{EOA}}} \right)\left( {\frac{1}{\text{EOA}} - \frac{1}{{A_{\text{d}} }}} \right)} \right]$$
(35)

The first term in the right-hand side (∆p Rigid) is pressure loss caused by convective inertia in the rigid vessel, while the second term (∆p Co) corresponds to the contribution of the vessel compliance to convective pressure loss as the following:

$$\Delta p_{\text{Co}} = 2\rho Q^{2} \frac{{\sqrt {A_{\text{d}} } {\text{d}}p}}{{Eh{\kern 1pt} {\kern 1pt} \sqrt \pi }}\left( {\frac{1}{\text{EOA}}} \right)\left( {\frac{1}{\text{EOA}} - \frac{1}{{A_{\text{d}} }}} \right)$$
(36)

where dp is the pressure variation in the aorta. This term can be scaled as a fraction of the pulse pressure by introducing an empirical constant k p which has the dimension of the pressure. Hence, by including the effect of all constant coefficients of Eq. (36) in k p, it can be simplified as:

$$\Delta p_{\text{Co}} = \frac{{\rho k_{\text{p}} Q^{2} }}{Eh}\left( {\frac{{\sqrt {A_{\text{d}} } }}{\text{EOA}}} \right)\left( {\frac{1}{\text{EOA}} - \frac{1}{{A_{\text{d}} }}} \right)$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Cartier, R. & Mongrain, R. Derivation of a simplified relation for assessing aortic root pressure drop incorporating wall compliance. Med Biol Eng Comput 53, 241–251 (2015). https://doi.org/10.1007/s11517-014-1228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1228-9

Keywords

Navigation