Skip to main content
Log in

Existence and classification of overtwisted contact structures in all dimensions

  • Published:
Acta Mathematica

Abstract

We establish a parametric extension h-principle for overtwisted contact structures on manifolds of all dimensions, which is the direct generalization of the 3-dimensional result from [12]. It implies, in particular, that any closed manifold admits a contact structure in any given homotopy class of almost contact structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albers P., Hofer H.: On the Weinstein conjecture in higher dimensions. Comment. Math. Helv. 84, 429–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennequin, D., Entrelacements et équations de Pfaff, in Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982), Astérisque, 107, pp. 87–161. Soc. Math. France, Paris, 1983.

  3. Bourgeois F.: Odd dimensional tori are contact manifolds. Int. Math. Res. Not. 30, 1571–1574 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casals, R., Murphy, E. & Presas, F., Geometric criteria for overtwistedness. Preprint, 2015. arXiv:1503.06221 [math.SG].

  5. Casals R., Pancholi D., Presas F.: Almost contact 5-folds are contact. Ann. of Math. 182, 429–490 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casals, R., del Pino, A. & Presas, F., h-principle for 4-dimensional contact foliations. Preprint, 2014. arXiv:1406.7328 [math.SG].

  7. Casals, R. & Presas, F., On the strong orderability of overtwisted 3-folds. Preprint, 2014. arXiv:1408.2077 [math.SG].

  8. Casals, R., Presas, F. & Sandon, S., On the non-existence of small positive loops of contactomorphisms on overtwisted contact manifolds. Preprint, 2014. arXiv:1403.0350 [math.SG].

  9. Chern S. S.: The geometry of G-structures. Bull. Amer. Math. Soc. 72, 167–219 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chernov V., Nemirovski S.: Non-negative Legendrian isotopy in ST*M. Geom. Topol. 14, 611–626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colin, V., Giroux, E. & Honda, K., On the coarse classification of tight contact structures, in Topology and Geometry of Manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., 71, pp. 109–120. Amer. Math. Soc., Providence, RI, 2003.

  12. Eliashberg Y.: Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 98, 623–637 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eliashberg Y.: Topological characterization of Stein manifolds of dimension >2. Internat. J. Math. 1, 29–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eliashberg Y.: Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst. Fourier (Grenoble). 42, 165–192 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eliashberg, Y., Kim, S. S. & Polterovich, L., Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol., 10 (2006), 1635–1747; Erratum in Geom. Topol., 13 (2009), 1175–1176.

  16. Eliashberg Y., Mishachev N. M.: Wrinkling of smooth mappings and its applications. I.. Invent. Math. 130, 345–369 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eliashberg Y., Polterovich L.: Partially ordered groups and geometry of contact transformations. Geom. Funct. Anal. 10, 1448–1476 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Etnyre, J. B., Contact structures on 5-manifolds. Preprint, 2012. arXiv:1210.5208 [math.SG].

  19. Geiges H.: Contact structures on 1-connected 5-manifolds. Mathematika. 38, 303–311 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geiges H.: Applications of contact surgery. Topology 36, 1193–1220 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Geiges, H., An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, 109. Cambridge Univ. Press, Cambridge, 2008.

  22. Geiges H., Thomas C. B.: Contact topology and the structure of 5-manifolds with \({\pi_{1} = Z_{2}}\). Ann. Inst. Fourier (Grenoble). 48, 1167–1188 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geiges H., Thomas C. B.: Contact structures, equivariant spin bordism, and periodic fundamental groups. Math. Ann. 320, 685–708 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Giroux E.: Structures de contact en dimension trois et bifurcations des feuilletages de surfaces. Invent. Math. 141, 615–689 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Giroux, E., Géométrie de contact: de la dimension trois vers les dimensions supérieures, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 405–414. Higher Ed. Press, Beijing, 2002.

  26. Givental, A.B., Nonlinear generalization of the Maslov index, in Theory of Singularities and its Applications, Adv. Soviet Math., 1, pp. 71–103. Amer. Math. Soc., Providence, RI, 1990.

  27. Gray J. W.: Some global properties of contact structures. Ann. of Math. 69, 421–450 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gromov, M. L., Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 707–734 (Russian); English translation in Math. USSR–Izv., 3 (1969), 671–694.

  29. Gromov M. L.: Smoothing and inversion of differential operators. Mat. Sb. 88(130), 382–441 (1972) (Russian)

    MathSciNet  Google Scholar 

  30. Gromov M. L.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gromov, M. L., Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete, 9. Springer, Berlin–Heidelberg, 1986.

  32. Harris B.: Some calculations of homotopy groups of symmetric spaces. Trans. Amer. Math. Soc. 106, 174–184 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  33. Honda K.: On the classification of tight contact structures.. I. Geom. Topol. 4, 309–368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Honda K.: On the classification of tight contact structures. II.. J. Differential Geom. 55, 83–143 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Kwon, M. & van Koert, O., Brieskorn manifolds in contact topology. Preprint, 2013. arXiv:1310.0343 [math.SG].

  36. Lutz R.: Structures de contact sur les fibrés principaux en cercles de dimension trois. Ann. Inst. Fourier (Grenoble). 27(3), 1–15 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lutz R.: Sur la géométrie des structures de contact invariantes. Ann. Inst. Fourier (Grenoble). 29(1), 283–306 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Martinet, J., Formes de contact sur les variétés de dimension 3, in Proceedings of Liverpool Singularities Symposium, II (1969/1970), Lecture Notes in Math., 209, pp. 142–163. Springer, Berlin–Heidelberg, 1971.

  39. Murphy E., Niederkrüger K., Plamenevskaya O., Stipsicz A. I.: Loose Legendrians and the plastikstufe. Geom. Topol. 17, 1791–1814 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Niederkrüger K.: The plastikstufe — a generalization of the overtwisted disk to higher dimensions. Algebr. Geom. Topol. 6, 2473–2508 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Niederkrüger K., On Fillability of Contact Manifolds. Mémoire d’habilitation á diriger des recherches, Université Toulouse III Paul Sabatier, 2013.

  42. Niederkrüger, K. & van Koert, O., Every contact manifolds can be given a nonfillable contact structure. Int. Math. Res. Not. IMRN, 23 (2007), Art. ID rnm115, 22 pp.

  43. Niederkrüger K., Presas F.: Some remarks on the size of tubular neighborhoods in contact topology and fillability. Geom. Topol. 14, 719–754 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Presas F.: A class of non-fillable contact structures. Geom. Topol. 11, 2203–2225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sandon S.: An integer-valued bi-invariant metric on the group of contactomorphisms of \({{\mathbb R}^{2n} \times S^{1}}\). J. Topol. Anal. 2, 327–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ustilovsky I.: Infinitely many contact structures on \({S^{4m+1}}\). Int. Math. Res. Not. 14, 781–791 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Eliashberg.

Additional information

To Misha Gromov with admiration.

M. S. B. was partially supported by NSF grant DMS-1304252, Y. E. was partially supported by NSF grant DMS-1205349, E. M. was partially supported by NSF grant DMS-1510305.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borman, M.S., Eliashberg, Y. & Murphy, E. Existence and classification of overtwisted contact structures in all dimensions. Acta Math 215, 281–361 (2015). https://doi.org/10.1007/s11511-016-0134-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-016-0134-4

Navigation