Skip to main content
Log in

Thermal and pH Stability of the B-Phycoerythrin from the Red Algae Porphyridium cruentum

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Phycoerythrin is the major light-harvesting pigment-protein of the red algae Porphyridium cruentum and is widely used as fluorescent probe and analytical reagent. Additionally this protein has a potential application as natural dye in food industry. Nevertheless the knowledge of the functional properties of this alga protein is limited, hindering its application as food additive. In this article we report a biophysical characterization of B-phycoerythrin from Porphyridium cruentum (B-PE) in order to study its stability and spectral properties in a broad range of pHs. This information can help in its potential application as colorant in the food industry. Spectroscopic data obtained in this work show that B-PE has a stronger functional stability in the pH range 4.0–10.0, and Size Exclusion Chromatography suggests that the protein maintains a (αβ)6-γ oligomeric structure in that range of pHs. At pH 7.0, an apparent T m value of 77.5 ± 0.5 °C was calculated. At this pH, the protein is highly stable with a loss of only 20 % of its spectral properties (absorbance and fluorescence) after 25 days at room temperature. These results indicate that B-PE is more stable in a broad range of pHs than other phycoerythrin proteins, which would facilitate its use in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Since three different subunits are present in B-PE, the unfolding of this protein might be more complicated than a two-state mechanism.

References

  1. D.B. Stengel, S. Connan, Z.A. Popper, Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol. Adv. 29, 483–501 (2011)

    Article  CAS  Google Scholar 

  2. A.C. Guedes, H.M. Amaro, F.X. Malcata, Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnol Progr 27, 597–613 (2011)

    Article  CAS  Google Scholar 

  3. S. Sekar, M. Chandramohan, Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 20, 113–136 (2008)

    Article  Google Scholar 

  4. M.C. Santiago-Santos, T. Ponce-Noyola, R. Olvera-Ramírez, J. Ortega-López, R.O. Cañizares-Villanueva, Extraction and purification of phycocyanin from Calothrix sp. Process Biochem. 39, 2047–2052 (2004)

    Article  CAS  Google Scholar 

  5. L.N. Liu, H.N. Su, S.G. Yan, S.M. Shao, B.B. Xie, X.L. Chen, X.Y. Zhang, B.C. Zhou, Y.Z. Zhang, Probing the pH sensitivity of R-phycoerythrin: investigations of active conformational and functional variation. Biochim. Biophys. Acta 1787, 939–946 (2009)

    Article  CAS  Google Scholar 

  6. A.N. Glazer, Phycobiliproteins. Methods Enzymol. 167, 291–303 (1988)

    Article  CAS  Google Scholar 

  7. E. Mörschel, E. Rhiel, in Phycobilisomes and Thylakoids, ed. by J.R. Harris, R.W. Horne (Academic Press, London, 1987), p. 210

    Google Scholar 

  8. G.J. Wedemayer, D.G. Kidd, A.N. Glazer, Cryptomonad biliproteins: bilin types and locations. Photosynth. Res. 48, 163–170 (1996)

    Article  CAS  Google Scholar 

  9. A. Yaron and S. (M) Arad, Natural pigments from red microalgae for food and cosmetics. In: Charalambous G, editor. Food flavors, ingredients and composition. Amsterdam: Elsevier Science Publishers BV; 1993

  10. M.F. de Jesus Raposo, R.M. de Morais, A.M. de Morais, Health applications of bioactive compounds from marine microalgae. Life Sci. 93, 479–486 (2013)

    Article  Google Scholar 

  11. P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96 (2006)

    Article  CAS  Google Scholar 

  12. Richa, V.K. Kannaujiya, M. Kesheri, G. Singh, R.P. Sinha, Biotechnological potentials of phycobiliproteins. Int. J. Pharmaceut. Res. Biosci. 2, B446–B454 (2011)

    Google Scholar 

  13. Q. Pan, M. Chen, J. Li, Y. Wu, C. Zhen, B. Liang, Antitumor function and mechanism of phycoerythrin from Porphyra haitanensis. Biol Res. 46, 87–95 (2013)

    Article  Google Scholar 

  14. A.N. Glazer, C.S. Hixson, Subunit structure and chromophore composition of rhodophytan phycoerythrins. B-phycoerythrin and b-phycoerythrin. J. Biol. Chem. 252, 32–42 (1977)

    CAS  Google Scholar 

  15. R.W. Swanson, A.N. Glazer, Separation of phycobiliprotein subunits by reverse-phase high-pressure liquid chromatography. Anal. Biochem. 188, 295–299 (1990)

    Article  CAS  Google Scholar 

  16. S.M. Wilbanks, A.N. Glazer, Rod structure of phycoerythrin II-containing phycobilisome II, Complete sequence and bilin attachment site of a phycoerythrin γ-subunit. J. Biol. Chem. 268, 1236–1241 (1993)

    CAS  Google Scholar 

  17. A. Camara-Artigas, J. Bacarizo, M. Andujar-Sanchez, E. Ortiz-Salmeron, C. Mesa-Valle, C. Cuadri, J.M. Martin-Garcia, S. Martinez-Rodriguez, T. Mazzuca-Sobczuk, M.J. Ibañez, J.P. Allen, pH-dependent structural conformations of B-phycoerythrin from Porphyridium cruentum. FEBS J. 279, 3680–3691 (2012)

    Article  CAS  Google Scholar 

  18. D.J. Lundell, A.N. Glazer, R.J. de Lange, D.M. Brown, Bilin attachment sites in the α- and β-subunits of B-phycoerythrin. Amino acid sequence studies. J. Biol. Chem. 259, 5472–5480 (1984)

    CAS  Google Scholar 

  19. R. Bermejo Román, J.M. Alvárez-Pez, F.G. Acién Fernández, E. Molina Grima, Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J. Biotechnol. 93, 73–85 (2002)

    Article  Google Scholar 

  20. R. Bermejo, E.M. Talavera, J.M. Álvarez Pez, Chromatographic purification and characterization of B-phycoerythrin from Porphyridium cruentum. Semipreparative high-performance liquid chromatographic separation and characterization of its subunits. J. Chrom. A. 917, 135–145 (2001)

    Article  CAS  Google Scholar 

  21. R. Ficner, R. Huber, Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur. J. Biochem. 218, 103–106 (1993)

    Article  CAS  Google Scholar 

  22. R. Bermejo, F.G. Acién, M.J. Ibáñez, J.M. Fernández, E. Molina, J.M. Alvarez-Pez, Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 790, 317–325 (2003)

    Article  CAS  Google Scholar 

  23. R. Bermejo, D.J. Tobaruela, E.M. Talavera, A. Orte, J.M. Alvarez-Pez, Fluorescent behavior of B-phycoerythrin in microemulsions of aerosol OT/water/isooctane. J. Colloid Interface Sci. 263, 616–624 (2003)

    Article  CAS  Google Scholar 

  24. S.K. Mishra, A. Shrivastav, I. Pancha, D. Jain, S. Mishra, Effect of preservatives for food grade C-Phycoerythrin, isolated from marine cyanobacteria Pseudanabaena sp. Int. J. Biol. Macromol. 47, 597–602 (2010)

    Article  CAS  Google Scholar 

  25. M.J. Ibañez-Gonzalez, T. Mazzuca-Sobczuk, E. Molina-Grima, Procedimiento de purificación de biomoléculas que utiliza cromatografía de adsorción en lecho expandido. Patent ES 2383866, B1 (2013)

    Google Scholar 

  26. M.I. Muro-Pastor, F.N. Barrera, J.C. Reyes, F.J. Florencio, J.L. Neira, The inactivating factor of glutamine synthetase, IF7, is a “natively unfolded” protein. Protein Sci. 12, 1443–1454 (2003)

    Article  CAS  Google Scholar 

  27. A. Gaigalas, T. Gallagher, K. Cole, T. Singh, L. Wang, Y. Zhang, A multistate model for the fluorescence response of R-phycoerythrin. Photochem. Photobiol. 82, 635–644 (2006)

    Article  CAS  Google Scholar 

  28. M.A. Andrade, P. Chacón, J.J. Merelo, F. Morán, Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised learning neural network. Prot. Eng. 6, 383–390 (1993)

    Article  CAS  Google Scholar 

  29. A. Orta-Ramirez, J.E. Merrill, D.M. Smith, pH affects the thermal inactivation parameters of R-phycoerythrin from Porphyra yezoensis. J. Food Sci. 65, 1046–1050 (2000)

    Article  CAS  Google Scholar 

  30. L.G. Roth, D.S. Berns, C.H. Chen, Comparative thermodynamic elucidation of the structural stability of thermophilic proteins. Biophys. Chem. 60, 89–97 (1996)

    Article  CAS  Google Scholar 

  31. C. Abad-Zapatero, J.L. Fox, M.L. Hackert, The quaternary structure of a unique phycobiliprotein: B-phycoerythrin from Porphyridium cruentum. Biochem. Biophys. Res. Commun. 78, 266–272 (1977)

    Article  CAS  Google Scholar 

  32. A.N. Glazer, C.S. Hixson, Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. J. Biol. Chem. 250, 5487–5495 (1975)

    CAS  Google Scholar 

  33. C.N. Pace, G.R. Grimsley, J.M. Scholtz, Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 284, 13285–13289 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Ciencia e Innovación (MCINN) BIO2009-13261-C02-01/02 and Ministerio de Economia y competitividad (MECOM) BIO2012-39922-C02-01/02 of Spain and FEDER (EU). Additional funding was supported by grant P09-CVI-5063 from Andalusian Regional Government (Spain) and FEDER (EU). This work has been performed by members of the research groups BIO-328 Protein Structures of the Andalusian Regional Government (Spain).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Cámara-Artigas or Sergio Martínez-Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.36 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Ramírez, E., Andújar-Sánchez, M., Ortiz-Salmerón, E. et al. Thermal and pH Stability of the B-Phycoerythrin from the Red Algae Porphyridium cruentum . Food Biophysics 9, 184–192 (2014). https://doi.org/10.1007/s11483-014-9331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9331-x

Keywords

Navigation