Skip to main content

Advertisement

Log in

Nanomaterial Applications in Multiple Sclerosis Inflamed Brain

  • PERSPECTIVE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

In the last years scientific progress in nanomaterials, where size and shape make the difference, has increased their utilization in medicine with the development of a promising new translational science: nanomedicine. Due to their surface and core biophysical properties, nanomaterials hold the promise for medical applications in central nervous system (CNS) diseases: inflammatory, degenerative and tumors. The present review is focused on nanomaterials at the neuro-immune interface, evaluating two aspects: the possible CNS inflammatory response induced by nanomaterials and the developments of nanomaterials to improve treatment and diagnosis of neuroinflammatory diseases, with a focus on multiple sclerosis (MS). Indeed, nanomedicine allows projecting new ways of drug delivery and novel techniques for CNS imaging. Despite the wide field of application in neurological diseases of nanomaterials, our topic here is to review the more recent development of nanomaterials that cross blood brain barrier (BBB) and reach specific target during CNS inflammatory diseases, a crucial strategy for CNS early diagnosis and drug delivery, indeed the main challenges of nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott NJ, Patabendige AA, Dolman DE et al (2010) Structure and function of the blood brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Absinta M, Sati P, Gaitan MI et al (2013) Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol 74(5):669–678

    Article  CAS  PubMed  Google Scholar 

  • Adams RD, Kubik CS (1952) The morbid anatomy of demyelinative disease. Am J Med 12(5):510–546

    Article  CAS  PubMed  Google Scholar 

  • Akhtari M, Bragin A, Moats R et al (2012) Imaging brain neuronal activity using functionalized magneto particles and MRI. Brain Topogr 25(4):374–388

    Article  PubMed  Google Scholar 

  • Aldinucci A, Turco A, Biagioli T et al (2013) Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale. Nano Lett 13(12):6098–6105

    Article  CAS  PubMed  Google Scholar 

  • Anderson SA, Shukaliak-Quandt J, Jordn EK et al (2004) Magnetic resonance imaging of labeled T-cells in a mouse model of mutliple sclerosis. Ann Neurol 55(5):654–659

    Article  PubMed  Google Scholar 

  • Avnir Y, Turjeman K, Tulchinsky D et al (2011) Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS One 6(10):e25721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baeten K, Hendriks JJ, Hellings N et al (2008) Visualization of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging. J Neuroimmunol 195(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  • Baeten K, Adriaensens P, Hendriks J et al (2010) Tracking of myelin reactive RT cells in EAE animals using small particles of iron oxide and MRI. NMR Biomed 23(6):601–619

    Article  CAS  PubMed  Google Scholar 

  • Bardi G, Nunes A, Gherardini L et al (2013) Functionalized carbon nanotubes in the brain: cellular internalization and neuroinflammatory response. PLoS One 8(11):e80964

    Article  PubMed Central  PubMed  Google Scholar 

  • Barkhof F, Simon JH, Fazekas F et al (2011) MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat Rev Neurol 8(1):13–21

    Article  PubMed  Google Scholar 

  • Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7(11):904–912

    Article  CAS  PubMed  Google Scholar 

  • Bondi ML, Craparo EF, Giammona G et al (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine 5:25–32

    Article  CAS  PubMed  Google Scholar 

  • Büyüktimkin B, Wang Q, Kiptoo P et al (2012) Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis. Mol Pharm 9:979–985

    Article  PubMed Central  PubMed  Google Scholar 

  • Cappellano G, Woldetsadik AD, Orilieri E (2014) Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine 32:5681–5689

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ, Doose JM, Melchior B et al (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213:48–65

    Article  PubMed Central  PubMed  Google Scholar 

  • Cavaletti G, Cassetti A, Canta A (2009) Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol Pharm 6(4):1050–1058

    Google Scholar 

  • Cellot G, Cilia E, Cipollone S et al (2009) Carbon nanotubes might improve neuronal performance by favoring electrical shortcuts. Nat Nanotechnol 4:126–133

    Article  CAS  PubMed  Google Scholar 

  • Cha S, Knopp EA, Johnson G, et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiol 223(1):11–29

  • Corot C, Petry KG, Trivedi R et al (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Investig Radiol 39(10):619–625

  • Dai H, Navath RS, Balakrishnan B et al (2010) Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subaracnoid administration. Nanomedicine 5(9):1317–1329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Chickera S, Willert C, Mallet C et al (2012) Cellular MRI as suitable, sensitive non-invasive modality for correlating in vivo migratory efficiencies of different dendritic cell populations with subsequent biological outcomes. Int Immunol 24(1):29–41

    Article  PubMed  Google Scholar 

  • Floris S, Blezer EL, Schreibelt G et al (2004) Blood–brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 127(3):616–627

    Article  CAS  PubMed  Google Scholar 

  • Fon D, Zhou K, Ercole F et al (2014) Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain. Biomaterials 35:2692–2712

    Article  CAS  PubMed  Google Scholar 

  • Gaitan MI, Shea CD, Evangelou IE et al (2011) Evolution of the blood–brain barrier in newly forming multiple sclerosis lesions. Ann Neurol 70(1):22–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaitan MI, Sati P, Inati SJ et al (2013) Initial investigation of the blood–brain barrier in MS lesions at 7 tesla. Mult Scler 19(8):1068–1073

    Article  PubMed  Google Scholar 

  • Garden OA, Reynolds PR, Yates J et al (2006) A rapid method for labelling CD4 + T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory, and migratory behavior in vitro. J Immunol Methods 314(1–2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Law M, Johnson G et al (2005) Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. Am J Neuroradiol 26(6):1539–1547

    PubMed  Google Scholar 

  • Getts DR, Turley DM, Smith CE et al (2011) Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10 producing splenic macrophages and maintained by T regulatory cells. J Immunol 187:2405–2417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Getts DR, Martin AJ, McCarthy DP et al (2012) Microparticles bearing encephalytogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30(12):1217–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Getts DR, Terry RL, Getts MT et al (2014) Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6:219ra7

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilmore JL, Yi X, Quan L et al (2008) Novel nanomaterials for clinical neuroscience. J NeuroImmune Pharm 3:83–94

    Article  Google Scholar 

  • Godinho BM, McCarthy DJ, Torres-Fuentes C et al (2014) Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system. Biomaterials 35:489–499

    Article  CAS  PubMed  Google Scholar 

  • Gomes MJ, Neves JD, Sarmento B (2014) Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. Int J Nanomedicine 9:1757–1769

    PubMed Central  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia. active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Hauser SL, Chan JR, Oksenberg JR (2013) Multiple Sclerosis: prospects and promise. Ann Neurol 74:317–327

    CAS  PubMed  Google Scholar 

  • Heckman KL, DeCoteau W, Estevez A et al (2013) Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 7(12):10582–10596

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477

    Article  CAS  PubMed  Google Scholar 

  • Herz J, Paterka M, Niesner RA et al (2011) In vivo imaging of lymphocytes in the CNS reveals different behavior of naive T cells in health and disease. J Neuroinflammation 8:131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofmann-Amtenbrink M, Hofmann H, Hool A et al (2014) Nanotechnology in medicine: European research and its implications. Swiss Med Wkly 144:w14044

    PubMed  Google Scholar 

  • Huang JY, Lu YM, Wang H et al (2013) The effect of lipid nanoparticle PEGylation on neuroinflammatory response in mouse brain. Biomaterials 34:7960–7970

    Article  CAS  PubMed  Google Scholar 

  • Hunter Z, McCarthy DP, Yap WT et al (2014) A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 8(3):2148–2160

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Li S, Wang C et al (2014) Biosafe nanoscale pharmaceutical adjuvant materials. J Biomed Nanotechnol 10(9):2393–2419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanwar JR, Sun X, Punj V et al (2012) Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine: nanotechnology. Biol Med 8:399–414

    CAS  Google Scholar 

  • Kap YS, Laman JD, ‘t Hart BA (2011) Effects of early IL17A neutralization on disease induction in a primate model of experimental autoimmune encephalomyelitis. J NeuroImmune Pharm 5(2):220–230

    Article  Google Scholar 

  • Katz D, Taubenberger JK, Cannella B et al (1993) Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 34(5):661–669

    Article  CAS  PubMed  Google Scholar 

  • Kizelsztein P, Ovadia H, Garbuzenko O et al (2009) Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J NeuroImmune 213:20–25

    Article  CAS  Google Scholar 

  • Klyachko NL, Haney MJ, Zhao Y (2013) Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine 9(9):1403–1422

    Article  PubMed Central  PubMed  Google Scholar 

  • Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis. Nat Rev Neurol 8:647–656

    Article  CAS  PubMed  Google Scholar 

  • Lemos H, Huang L, Chandler PR et al (2014) Activating of the STING adaptor attenuates experimental autoimmune encephalomyelitis. J Immunol 192:5571–5578

    Article  CAS  PubMed  Google Scholar 

  • Luchetti A, Milani D, Ruffini F et al (2011) Monoclonal antibodies conjugated with superparamagnetic iron oxide particles allow magnetic resonance imaging detection of lymphocytes in the mouse. Mol Imaging 2011:1–12

    Google Scholar 

  • Maggi P, Macri SM, Gaitan MI et al (2014) The formation of inflammatory demyelinated lesions in cerebral white matter. Ann Neurol 76(4):594–608

    Article  PubMed  Google Scholar 

  • McAteer MA, Sibson NR, von Zur MC et al (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13(10):1253–1258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McFarland HF (1998) The lesion in multiple sclerosis: clinical, pathological, and magnetic resonance imaging considerations. J Neurol Neurosurg Psychiatry 64(Suppl 1):S26–S30

    PubMed  Google Scholar 

  • Mei F, Fancy SP, Shen YA et al (2014) Micropillar arrays as high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 20(8):954–961

    Article  CAS  PubMed  Google Scholar 

  • Miller IS, Lynch I, Dowling D et al (2010) Surface induced cell signaling events control actin rearrangements an motility. J Biomed Mater Res A 93:493–504

    PubMed  Google Scholar 

  • Mondal S, Martinson JA, Ghosh S et al (2012) Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by physically-modified saline. PLoS ONE 7(12):e51869. doi:10.13171/journal.pone.0051869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neuwelt EA et al (2007) The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60(4):601–611

    Article  PubMed  Google Scholar 

  • Nylander A, Hafler DA (2012) Multiple. Scler J Clin Invest 122(4):1180–1188

    Article  CAS  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical application. Adv Drug Deliv Rev 55(3):403–419

    Article  CAS  PubMed  Google Scholar 

  • Oude Engberink RD, Blezer EL, Hoff EI et al (2008) MRI of monocyte infiltration in an animal model of neuroinflammation using SPIO-labeled monocytes of free USPIO. J Cereb Blood Flow Metab 28(4):841–851

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Rossi F, Ferrari R et al (2013) Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury. ACS Nano 7(11):9881–9895

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Ferrari R, De Paola M et al (2014) Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Rel 174:15–26

    Article  CAS  Google Scholar 

  • Park JY, Baek MJ, Choi ES et al (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3(11):3663–3669

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Mriganka S, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8, article 378

    Article  Google Scholar 

  • Prineas JW, Parratt JD (2012) Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol 72(1):18–31

    Article  PubMed  Google Scholar 

  • Ransohoff RM, Cadorna AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262

    Article  CAS  PubMed  Google Scholar 

  • Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514–523

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Howe FA, Griffiths JR et al (2007) Susceptibility contrast magnetic resonance imaging determination of fractional tumor blood volume: a noninvasive imaging biomarker of response to the vascular disrupting agent ZD6126. Int J Radiat Oncol Biol Phys 69(3):872–879

    Article  PubMed  Google Scholar 

  • Ruiz-Cabello J, Walczak P, Kedziorek DA et al (2008) In vivo hot spot MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60(6):1506–1511

    Article  PubMed Central  PubMed  Google Scholar 

  • Saleh A, Wiedermann D, Schroeter M et al (2004) Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR Biomed 17(4):163–169

    Article  PubMed  Google Scholar 

  • Schefer PW, Barak ER, Kamalian S et al (2008) Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke 39(11):2986–2992

    Article  Google Scholar 

  • Schmidt J, Metselaar JM, Wauben MH et al (2003) Drug targeting by long circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126:1895–1904

    Article  PubMed  Google Scholar 

  • Shah L, Yadav S, Amiji M (2013) Nanotechnology for CNS delivery of Bio-therapeutic agents. Drug Deliv Transl Res 3(4):336–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skaat H, Corem-Slakmon E, Grinberg I et al (2013) Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antimyloidgenic activity and specific detection of amyloid-β fibrils. Int J Nanomedicine 8:4063–4076

    PubMed Central  PubMed  Google Scholar 

  • Smirnov P (2009) Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy. Methods Mol Biol 512:333–353

    Article  CAS  PubMed  Google Scholar 

  • Soon D, Tozer D, Altmann D et al (2007) Quantification of subtle blood-barrier disruption in non-enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes. Mult Scler 13(7):884–894

    Article  CAS  PubMed  Google Scholar 

  • Sriram S, Steiner I (2005) Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann Neurol 58(6):939–945

    Article  CAS  PubMed  Google Scholar 

  • Steinmann L, Zamvil SS (2006) How to successfully apply studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60(1):12–21

    Article  Google Scholar 

  • Strejan GH, St Louis J (1990) Suppression of experimental allergic encephalomyelitis by MBP-coupled lymphoid cells and by MBP-liposomes: a comparison. Cell Immunol 127:284–298

    Article  CAS  PubMed  Google Scholar 

  • Sykova E, Jendelova P (2007) In vivo tracking of stem cells in brain and spinal cord injury. Progression Brain Res 161:367–383

    Article  CAS  Google Scholar 

  • t Hart BA, Masacesi L (2009) Clinical, pathological and immunologic aspects of the multiple sclerosis model in common marmoset (Callithrix jacchus). J Neuropath Exp Neurol 2009 68(4):341–355

    Article  Google Scholar 

  • t Hart BA, van Meurs M, Brok HP et al (2000) A new primate model for multiple sclerosis in the common marmoset. Immunol Today 21(6):290–297

    Article  CAS  Google Scholar 

  • Tang T, Howarth SP, Miller SR et al (2006) Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke 37(9):2266–2270

    Article  CAS  PubMed  Google Scholar 

  • Tofts PS, Brix G, Buckley GL et al (1999) Estimating kinetic parameters from dynamic contrast enhanced T(1)-weighted MRI of a diffusible tracer: standardized quntities and symbols. J Magn Reson Imaging 10(3):223–232

    Article  CAS  PubMed  Google Scholar 

  • Varallyay CG, Muldoon LL, Gahramanov S et al (2009) Dynamic MRI using iron oxide nanoparticles to assess early vascular effects of antiangiogenic versus corticosteroid treatment in a glioma model. J Cereb Blood Flow Metab 29(4):853–860

  • Vellinga MM, Oude Engberink RD, Seewann A et al (2008) Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131:800–807

    Article  PubMed  Google Scholar 

  • Weistein JS, Varallyay CG, Dosa E et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory patholog ies, a review. J Cereb Blood Flow Metab 30(1):15–35

    Article  Google Scholar 

  • Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64:686–700

    Article  CAS  PubMed  Google Scholar 

  • Wraith DC, Nicholson LB (2012) The adaptive immune system in diseases of the central nervous system. J Clin Invest 122(4):1172–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu X, Hu J, Zhou L et al (2008) In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. J Neurosurg 108(2):320–329

  • Yednock TA, Cannon C, Fritz LC et al (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356(6364):63–66

    Article  CAS  PubMed  Google Scholar 

  • Yeste A, Nadeau M, Burns EJ et al (2012) Nanoparticle-mediated codelivery of myelin antigen and tolerogenic small molecules suppresses experimental autoimmune encephalomyelitis. PNAS 109(28):11270–11275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan B, Zhao L, Fu F et al (2014) A novel nanoparticle containing MOG peptide with BTLA induces T cell tolerance and prevents multiple sclerosis. Mol Immunol 57:93–99

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Raoof M, Chen Y et al (2010) Circulating mithocondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are specially grateful to Dennis Scaini, Laura Ballerini and Maurizio Prato for providing us the SEM micrograph of purified MWCNTs original imagine and for helpful comments and manuscript critical revision. We are grateful to Sheila Macri, Emily Leibovitch, Maria Gaitan, Afonso Silva, Susan Westmoreland, Steve Jacobson and Daniel Reich for MRI/histology images in marmoset EAE.

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Ballerini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballerini, C., Baldi, G., Aldinucci, A. et al. Nanomaterial Applications in Multiple Sclerosis Inflamed Brain. J Neuroimmune Pharmacol 10, 1–13 (2015). https://doi.org/10.1007/s11481-015-9588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9588-y

Keywords

Navigation