Skip to main content

Cellular Magnetic Resonance Imaging Using Superparamagnetic Anionic Iron Oxide Nanoparticles: Applications to In Vivo Trafficking of Lymphocytes and Cell-Based Anticancer Therapy

  • Protocol
Inflammation and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 512))

Summary

In current cancer research, the application of cytotoxic T lymphocytes with specificity to tumor antigens is regarded as a real therapeutic hope. The objective of imaging is to provide a follow-up of these killer cells in real time, in order to gain a better understanding of the mechanisms and action modes of lymphocytes on the tumor. Magnetic resonance imaging (MRI) has the advantage of the innocu-ousness of the applied magnetic field. Moreover, it has an exceptional spatial resolution allowing the visualization of anatomical areas without in-depth limitations. These features make MRI particularly adapted for cellular imaging. The use of “ (ultrasmall) superparamagnetic iron oxide ” particles [(U) SPIO] offers the adequate sensitivity required for cellular imaging. To promote a sufficient capture of these particles in nonphagocytic cells and make the cell of interest “ detectable ” by MRI after its injection, an important challenge in cellular imaging is to develop improved cell-labeling techniques. Superparamagnetic anionic nanoparticles (iron oxides of 10-nm diameter) are adsorbed in a nonspecific way on the membrane of the majority of cells, allowing their spontaneous internalization in intracellular vesicles. This pathway of cellular labeling confers a particular status to these nanoparti-cles as MRI contrast agents; the cells labeled in this manner possess magnetic and contrast properties that allow their in vivo detection and follow-up by MRI. This chapter describes the synthesis, the potential use, and the features of cellular labeling with these types of anionic nanoparticles. We also focus on the MRI contrast properties of the labeled cells, as well as on the feasibility of in vivo detection of immunizing circulating cells by MRI, with direct implications in cell-based anticancer therapy using lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horowitz, M. M., Gale, R. P., Sondel, P. M., Goldman, J. M., Kersey, J., Kolb, H. J., Rimm, A. A., Ringden, O., Rozman, C., Speck, B., et al. (1990) Graft-versus-leukemia reactions after bone marrow transplantation Blood 75(3), 555–62.

    CAS  PubMed  Google Scholar 

  2. Kolb, H. J., Mittermuller, J., Clemm, C., Holler, E., Ledderose, G., Brehm, G., Heim, M., and Wilmanns, W. (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients Blood 76(12), 2462–5.

    CAS  PubMed  Google Scholar 

  3. Banchereau, J., Schuler-Thurner, B., Palucka, A. K., and Schuler, G. (2001) Dendritic cells as vectors for therapy Cell 106(3), 271–4.

    Article  CAS  PubMed  Google Scholar 

  4. Thurner, B., Haendle, I., Roder, C., Dieck-mann, D., Keikavoussi, P., Jonuleit, H., Bender, A., Maczek, C., Schreiner, D., von den Driesch, P., Brocker, E. B., Steinman, R. M., Enk, A., Kampgen, E., and Schuler, G. (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma J Exp Med 190(11), 1669–78.

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Diez, A., Butterfield, L. H., Li, L., Chakraborty, N. G., Economou, J. S., and Mukherji, B. (1998) Generation of CD8+ and CD4+ T-cell response to dendritic cells genetically engineered to express the MART-1/Melan-A gene Cancer Res 58(23), 5305–9.

    CAS  Google Scholar 

  6. Salgaller, M. L., Lodge, P. A., McLean, J. G., Tjoa, B. A., Loftus, D. J., Ragde, H., Kenny, G. M., Rogers, M., Boynton, A. L., and Murphy, G. P. (1998) Report of immune monitoring of prostate cancer patients undergoing T-cell therapy using dendritic cells pulsed with HLA-A2-spe-cific peptides from prostate-specific membrane antigen (PSMA) Prostate 35(2), 144–51.

    Article  CAS  PubMed  Google Scholar 

  7. Tjoa, B. A., Simmons, S. J., Bowes, V. A., Ragde, H., Rogers, M., Elgamal, A., Kenny, G. M., Cobb, O. E., Ireton, R. C., Troychak, M. J., Salgaller, M. L., Boynton, A. L., and Murphy, G. P. (1998) Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides Prostate 36(1), 39–44.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J. S., Wheeler, C. J., Zeltzer, P. M., Ying, H., Finger, D. N., Lee, P. K., Yong, W. H., Incardona, F., Thompson, R. C., Riedinger, M. S., Zhang, W., Prins, R. M., and Black, K. L. (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration Cancer Res 61(3), 842–7.

    CAS  PubMed  Google Scholar 

  9. Cannon, M. J., O'Brien, T. J., Underwood, L. J., Crew, M. D., Bondurant, K. L., and Santin, A. D. (2002) Novel target antigens for dendritic cell-based immunotherapy against ovarian cancer Expert Rev Anticancer Ther 2(1), 97–105.

    Article  CAS  PubMed  Google Scholar 

  10. Jalili, A., Stoklosa, T., Giermasz, A., Olsze-wska, D., Wilczynski, G., Jakobisiak, M., and Golab, J. (2002) A single injection of immature dendritic cells is able to induce antitumour response against a murine colon adenocarcinoma with a low apoptotic index Oncol Rep 9(5), 991–4.

    PubMed  Google Scholar 

  11. Ladhams, A., Schmidt, C., Sing, G., Butter-worth, L., Fielding, G., Tesar, P., Strong, R., Leggett, B., Powell, L., Maddern, G., Ellem, K., and Cooksley, G. (2002) Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells J Gastroenterol Hepatol 17(8), 889–96.

    Article  PubMed  Google Scholar 

  12. Fujii, S., Fujimoto, K., Shimizu, K., Ezaki, T., Kawano, F., Takatsuki, K., Kawakita, M., and Matsuno, K. (1999) Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoi-etic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients Cancer Res 59(9), 2150–8.

    CAS  PubMed  Google Scholar 

  13. Muller, L., Provenzani, C., Faul, C., and Pawelec, G. (2001) Recognition of chronic myelogenous leukaemia cells by autologous T lymphocytes primed in vitro against the patient's dendritic cells Br J Haematol 112(3), 740–8.

    Article  CAS  PubMed  Google Scholar 

  14. Flamand, V., Sornasse, T., Thielemans, K., Demanet, C., Leo, O., Urbain, J., and Moser, M. (1993) Vaccination with tumor-antigen-pulsed dendritic cells induces in vivo resistance to a B cell lymphoma Adv Exp Med Biol 329, 611–16.

    CAS  PubMed  Google Scholar 

  15. Hardy, J., Edinger, M., Bachmann, M. H., Negrin, R. S., Fathman, C. G., and Contag, C. H. (2001) Bioluminescence imaging of lymphocyte trafficking in vivo Exp Hematol 29(12), 1353–60.

    Article  CAS  PubMed  Google Scholar 

  16. Koehne, G., Doubrovin, M., Doubrovina, E., Zanzonico, P., Gallardo, H. F., Ivanova, A., Balatoni, J., Teruya-Feldstein, J., Heller, G., May, C., Ponomarev, V., Ruan, S., Finn, R., Blasberg, R. G., Bornmann, W., Riviere, I., Sadelain, M., O'Reilly, R. J., Larson, S. M., and Tjuvajev, J. G. (2003) Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes Nat Biotechnol 21(4), 405–13.

    Article  CAS  PubMed  Google Scholar 

  17. Chin, B. B., Nakamoto, Y., Bulte, J. W., Pit-tenger, M. F., Wahl, R., and Kraitchman, D. L. (2003) 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction Nucl Med Commun 24(11), 1149–54.

    Article  CAS  PubMed  Google Scholar 

  18. Bulte, J. W., Duncan, I. D., and Frank, J. A. (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation J Cereb Blood Flow Metab 22(8), 899–907.

    Article  PubMed  Google Scholar 

  19. Brigger, I., Dubernet, C., and Couvreur, P. (2002) Nanoparticles in cancer therapy and diagnosis Adv Drug Deliv Rev 54(5), 631–51.

    Article  CAS  PubMed  Google Scholar 

  20. Zelivyanskaya, M. L., Nelson, J. A., Poluek-tova, L., Uberti, M., Mellon, M., Gendelman, H. E., and Boska, M. D. (2003) Tracking superparamagnetic iron oxide labeled mono-cytes in brain by high-field magnetic resonance imaging J Neurosci Res 73(3), 284–95.

    Article  CAS  PubMed  Google Scholar 

  21. Moore, A., Weissleder, R., and Bogdanov, A., Jr. (1997) Uptake of dextran-coated monoc-rystalline iron oxides in tumor cells and macro-phages J Magn Reson Imaging 7(6), 1140–5.

    Article  CAS  PubMed  Google Scholar 

  22. Weissleder, R., Cheng, H. C., Bogdanova, A., and Bogdanov, A., Jr. (1997) Magnetically labeled cells can be detected by MR imaging J Magn Reson Imaging 7(1), 258–63.

    Article  CAS  PubMed  Google Scholar 

  23. Franklin, R. J., Blaschuk, K. L., Bearchell, M. C., Prestoz, L. L., Setzu, A., Brindle, K. M., and ffrench-Constant, C. (1999) Magnetic resonance imaging of transplanted oligodendro- cyte precursors in the rat brain Neuroreport 10(18), 3961–5.

    Article  CAS  PubMed  Google Scholar 

  24. van den Bos, E. J., Wagner, A., Mahrholdt, H., Thompson, R. B., Morimoto, Y., Sutton, B. S., Judd, R. M., and Taylor, D. A. (2003) Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes Cell Transplant 12(7), 743–56.

    PubMed  Google Scholar 

  25. Josephson, L., Tung, C. H., Moore, A., and Weissleder, R. (1999) High-efficiency intrac-ellular magnetic labeling with novel superpar-amagnetic-Tat peptide conjugates Bioconjug Chem 10(2), 186–91.

    Article  CAS  PubMed  Google Scholar 

  26. Allport, J. R. and Weissleder, R. (2001) In vivo imaging of gene and cell therapies Exp Hematol 29(11), 1237–46.

    Article  CAS  PubMed  Google Scholar 

  27. Wunderbaldinger, P., Josephson, L., and Weissleder, R. (2002) Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles Bioconjug Chem 13(2), 264–8.

    Article  CAS  PubMed  Google Scholar 

  28. Frank, J. A., Miller, B. R., Arbab, A. S., Zywicke, H. A., Jordan, E. K., Lewis, B. K., Bryant, L. H., Jr., and Bulte, J. W. (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamag-netic iron oxides and transfection agents Radiology 228(2), 480–7.

    Article  PubMed  Google Scholar 

  29. Frank, J. A., Zywicke, H., Jordan, E. K., Mitchell, J., Lewis, B. K., Miller, B., Bryant, L. H., Jr., and Bulte, J. W. (2002) Magnetic intracellular labeling of mammalian cells by combining (FDA- approved) superparamag-netic iron oxide MR contrast agents and commonly used transfection agents Acad Radiol 9 Suppl 2, S484–S487.

    Article  PubMed  Google Scholar 

  30. Hoehn, M., Kustermann, E., Blunk, J., Wie-dermann, D., Trapp, T., Wecker, S., Focking, M., Arnold, H., Hescheler, J., Fleischmann, B. K., Schwindt, W., and Buhrle, C. (2002) Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat Proc Natl Acad Sci USA 99(25), 16267–72.

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, S. A., Shukaliak-Quandt, J., Jordan, E. K., Arbab, A. S., Martin, R., McFarland, H., and Frank, J. A. (2004) Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis Ann Neurol 55(5), 654–9.

    Article  PubMed  Google Scholar 

  32. Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., Hare, J. M., and Bulte, J. W. (2003) In vivo magnetic resonance imaging of mes-enchymal stem cells in myocardial infarction Circulation 107(18), 2290–3.

    Article  PubMed  Google Scholar 

  33. Wilhelm, C., Billotey, C., Roger, J., Pons, J. N., Bacri, J. C., and Gazeau, F. (2003) Intra-cellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating Biomaterials 24(6), 1001–11.

    Article  CAS  PubMed  Google Scholar 

  34. Wilhelm, C., Gazeau, F., Roger, J., Pons, J. N., and Bacri, J. C. (2002) Interaction of ani-onic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization Langmuir 18, 8148–55.

    Article  CAS  Google Scholar 

  35. Bulte, J. W., Douglas, T., Witwer, B., Zhang, S. C., Strable, E., Lewis, B. K., Zywicke, H., Miller, B., van Gelderen, P., Moskowitz, B. M., Duncan, I. D., and Frank, J. A. (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells Nat Biotechnol 19(12), 1141–7.

    Article  CAS  PubMed  Google Scholar 

  36. Smirnov, P., Gazeau, F., Lewin, M., Bacri, J. C., Siauve, N., Vayssettes, C., Cuenod, C. A., and Clement, O. (2004) In vivo cellular imaging of magnetically labeled hybridomas in the spleen with a 1.5-T clinical MRI system Magn Reson Med 52(1), 73–9.

    Article  PubMed  Google Scholar 

  37. Smirnov, P., Lavergne, E., Gazeau, F., Lewin, M., Boissonnas, A., Doan, B. T., Gillet, B., Com-badiere, C., Combadiere, B., and Clement, O. (2006) In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy Magn Reson Med 56(3), 498–508.

    Article  CAS  PubMed  Google Scholar 

  38. Massart, R. (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17, 1247–8.

    Article  Google Scholar 

  39. Wilhelm, C., Gazeau, F., and Bacri, J. C. (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells Eur Biophys J 31(2), 118–25.

    Article  CAS  PubMed  Google Scholar 

  40. Naveau, A., Smirnov, P., Menager, C., Gazeau, F., Clement, O., Lafont, A., and Gogly, B. (2006) Phenotypic study of human gingival fibroblasts labeled with superparamagnetic anionic nanoparticles J Periodontol 77(2), 238–47.

    Article  CAS  PubMed  Google Scholar 

  41. Riviere, C., Boudghene, F. P., Gazeau, F., Roger, J., Pons, J. N., Laissy, J. P., Allaire, E., Michel, J. B., Letourneur, D., and Deux, J. F. (2005) Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation Radiology 235(3), 959–67.

    Article  PubMed  Google Scholar 

  42. Wilhelm, C., Bal, L., Smirnov, P., Galy-Fauroux, I., Clement, O., Gazeau, F., and Emmerich, J. (2007) Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells Biomate-rials 28(26), 3797–806.

    Article  CAS  Google Scholar 

  43. Billotey, C., Wilhelm, C., Devaud, M., Bacri, J. C., Bittoun, J., and Gazeau, F. (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging Magn Reson Med 49(4), 646–54.

    Article  CAS  PubMed  Google Scholar 

  44. Bowen, C. V., Zhang, X., Saab, G., Gareau, P. J., and Rutt, B. K. (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells Magn Reson Med 48(1), 52–61.

    Article  CAS  PubMed  Google Scholar 

  45. Roch, A., Gossuin, Y., Muller, R. N., and Gillis, P. (2005) Superparamagnetic colloid suspensions: next term water magnetic relaxation and clustering J Magn Magn Mater 293(1), 532–9.

    Article  CAS  Google Scholar 

  46. Smirnov, P., Gazeau, F., Beloeil, J. C., Doan, B. T., Wilhelm, C., and Gillet, B. (2006) Single-cell detection by gradient echo 9.4 T MRI: a parametric study Contrast Media Mol Imaging 1(4), 165–74.

    Article  CAS  PubMed  Google Scholar 

  47. Stroh, A., Faber, C., Neuberger, T., Lorenz, P., Sieland, K., Jakob, P. M., Webb, A., Pilgrimm, H., Schober, R., Pohl, E. E., and Zimmer, C. (2005) In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging Neuroimage 24(3), 635–45.

    Article  PubMed  Google Scholar 

  48. Moore, A., Zhe Sun, P., Cory, D., Hoge-mann, D., Weissleder, R., and Lipes, M. A. (2002) MRI of insulitis in autoimmune diabetes Magn Reson Med 47(4), 751–8.

    Article  PubMed  Google Scholar 

  49. Kircher, M. F., Allport, J. R., Graves, E. E., Love, V., Josephson, L., Lichtman, A. H., and Weissleder, R. (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors Cancer Res 63(20), 6838–46.

    CAS  PubMed  Google Scholar 

  50. Gillis, P. and Koenig, S. H. (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, eryth-rocytes, and magnetite Magn Reson Med 5(4), 323–45.

    Article  CAS  PubMed  Google Scholar 

  51. Gillis, P., Moiny, F., and Brooks, R. A. (2002) On T(2)-shortening by strongly magnetized spheres: a partial refocusing model Magn Reson Med 47(2), 257–63.

    Article  PubMed  Google Scholar 

  52. Yablonskiy, D. A. and Haacke, E. M. (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephas-ing regime Magn Reson Med 32(6), 749–63.

    Article  CAS  PubMed  Google Scholar 

  53. Shapiro, E. M., Sharer, K., Skrtic, S., and Kore-tsky, A. P. (2006) In vivo detection of single cells by MRI Magn Reson Med 55(2), 242–9.

    Article  PubMed  Google Scholar 

  54. Billotey, C., Aspord, C., Beuf, O., Piaggio, E., Gazeau, F., Janier, M. F., and Thivolet, C. (2005) T-cell homing to the pancreas in autoimmune mouse models of diabetes: in vivo MR imaging Radiology 236(2), 579–87.

    Article  PubMed  Google Scholar 

  55. Hu, D. E., Kettunen, M. I., and Brindle, K. M. (2005) Monitoring T-lymphocyte trafficking in tumors undergoing immune rejection Magn Reson Med 54(6), 1473–9.

    Article  CAS  PubMed  Google Scholar 

  56. Banks, W. A., Akerstrom, V., and Kastin, A. J. (1998) Adsorptive endocytosis mediates the passage of HIV-1 across the blood-brain barrier: evidence for a post-internalization core-ceptor J Cell Sci 111 (Part 4), 533–40.

    CAS  PubMed  Google Scholar 

  57. Nir, S., Klappe, K., and Hoekstra, D. (1986) Mass action analysis of kinetics and extent of fusion between Sendai virus and phospholipid vesicles Biochemistry 25(25), 8261–6.

    Article  CAS  PubMed  Google Scholar 

  58. Farquhar, M. G. (1978) Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cati-onic ferritin J Cell Biol 77(3), R35–R42.

    Article  CAS  PubMed  Google Scholar 

  59. Mutsaers, S. E. and Papadimitriou, J. M. (1988) Surface charge of macrophages and their interaction with charged particles J Leu-koc Biol 44(1), 17–26.

    CAS  Google Scholar 

  60. Miller, C. R., Bondurant, B., McLean, S. D., McGovern, K. A., and O'Brien, D. F. (1998) Liposome-cell interactions in vitro: effect of lipo-some surface charge on the binding and endo-cytosis of conventional and sterically stabilized liposomes Biochemistry 37(37), 12875–83.

    Article  CAS  PubMed  Google Scholar 

  61. Lee, K. D., Nir, S., and Papahadjopoulos, D. (1993) Quantitative analysis of liposome–cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes Biochemistry 32(3), 889–99.

    Article  CAS  PubMed  Google Scholar 

  62. Chenevier, P., Veyret, B., Roux, D., and Henry-Toulme, N. (2000) Interaction of cationic colloids at the surface of J774 cells: a kinetic analysis Biophys J 79(3), 1298–309.

    Article  CAS  PubMed  Google Scholar 

  63. Ghinea, N. and Simionescu, N. (1985) Ani-onized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: differentiated labeling of endothe-lial plasmalemmal vesicles J Cell Biol 100(2), 606–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Christine Ménager for providing the particles and synthesis protocol, and Dr. Eva Jakab Toth for scientific discussions and technical support. I thank Prof. Jean-Claude Beloeil and Dr. Bich-Thuy Doan for scientific advises. I also thank all contributors to the different works presented here, particularly Dr. Florence Gazeau, Dr. Claire Wilhelm, Dr. Maïté Lewin, Dr. Brigitte Gillet, and Prof. Olivier Clément.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smirnov, P. (2009). Cellular Magnetic Resonance Imaging Using Superparamagnetic Anionic Iron Oxide Nanoparticles: Applications to In Vivo Trafficking of Lymphocytes and Cell-Based Anticancer Therapy. In: Kozlov, S.V. (eds) Inflammation and Cancer. Methods in Molecular Biology™, vol 512. Humana Press. https://doi.org/10.1007/978-1-60327-530-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-530-9_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-529-3

  • Online ISBN: 978-1-60327-530-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics