Skip to main content
Log in

Controllable Steering and Tuning of Surface Plasmons on the Metallic Nano-film with Nanoslits Array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A scheme of steering and tuning surface plasmon wakes (SWs) on the metallic nano-film (MNF) excited by a free-electron-beam is demonstrated. With a well-designed array of nanoslits etched in the MNF, the SWs can be steered to propagate along the MNF in definite directions via a unique Smith-Purcell effect. Both the frequency and direction of SWs can be well controlled by adjusting the beam velocity and MNF parameters: the SW frequency can be tuned from the infrared to the ultraviolet, and the SWs can propagate both forwardly and backwardly. These results may indicate promising applications for surface plasmon devices on chip. And also the proposed scheme may offer an effective way for nondestructive detections of the particle velocity and dielectric index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gramotnev DK, Bozhevolnyi SI (2010) Nat Photon 4:83

    Article  CAS  Google Scholar 

  2. Thongrattanasiri S, Garca de Abajo FJ (2013) Phys Rev Lett 110:187401

    Article  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2006) Nature 440:508–511

    Article  Google Scholar 

  4. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) Nat Photon 2:496–500

    Article  CAS  Google Scholar 

  5. Maier SA, Atwater HA (2005) J Appl Phys 98:011101

    Article  Google Scholar 

  6. Kitur JK, Podolskiy VA, Noginov MA (2011) Phys Rev Lett 106:183903

    Article  CAS  Google Scholar 

  7. Giannini V, Vecchi G, Gómez Rivas J (2010) Phys Rev Lett 105:266801

    Article  CAS  Google Scholar 

  8. Dhaka RS, Barman SR (2010) Phys Rev Lett 104:036803

    Article  CAS  Google Scholar 

  9. Maier SA (2007) Plasmonics: fundamentals and applications. Springer-Velag

  10. Lee S, Lee IM, Park J, Oh S, Lee W, Kim KY, Lee B (2012) Phys Rev Lett 108(21):213907

    Article  Google Scholar 

  11. Raether H (1988) Plasmons on smooth and rough surfaces and on gratings. Springer-Verlag

  12. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667

    Article  CAS  Google Scholar 

  13. Liu H, Lalanne P (2008) Nature 452(7188):728–731

    Article  CAS  Google Scholar 

  14. Lin J, Mueller JB, Wang Q, Yuan G, Antoniou N, Yuan XC, Capasso F (2013) Science 340(6130):331–334

    Article  CAS  Google Scholar 

  15. Tanemura T, Balram KC, Ly-Gagnon DS, Wahl P, White JS, Brongersma ML, Miller DA (2011) Nano Lett 11(7):2693–2698

    Article  CAS  Google Scholar 

  16. Genevet P, Wintz D, Ambrosio A, She A, Blanchard R, Capasso F (2015) Nat Nanotechnol 10:804

    Article  CAS  Google Scholar 

  17. Yamamoto N, Araya K, García de Abajo FJ (2001) Phys Rev B 64:205419

    Article  Google Scholar 

  18. García de Abajo FJ (2010) Rev Mod Phys 82:209

    Article  Google Scholar 

  19. Yamamoto N, García de Abajo FJ, Myroshnychenko V (2015) Phys Rev B 91:125144

    Article  Google Scholar 

  20. Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M (2012) Phys Rev Lett 109:153902

    Article  Google Scholar 

  21. Bigelow NW, Vaschillo A, Iberi V, Camden JP, Masiello DJ (2012) ACS Nano 6(8):7497–7504

    Article  CAS  Google Scholar 

  22. Gómez-Medina R, Yamamoto N, Nakano M, García de Abajo FJ (2008) New J Phys 10:105009

    Article  Google Scholar 

  23. Coenen T, Vesseur EJR, Polman A, Koenderink AF (2011) Nano Lett 11:3779–3784

    Article  CAS  Google Scholar 

  24. Vesseur EJR, Waele R, Kuttge M, Polman A (2011) Nano Lett 7:2843–2846

    Article  Google Scholar 

  25. Liu W (2015) Opt Lett 40(20):4579–4582

    Article  CAS  Google Scholar 

  26. Liu W (2015) Photonics J IEEE 7(6):1–8

    Google Scholar 

  27. Zhang P, Zhang Y, Zhou J, Liu W, Zhong R, Liu S (2012) Chin Phys B 21(10):104102

    Article  Google Scholar 

  28. Lee G, Lee S, Yun H, Park H, Kim J, Lee K, Leea B (2016) Sci Rep 6:33317

    Article  CAS  Google Scholar 

  29. Smith SJ, Purcell EM (1953) Phys Rev 92:1069

    Article  Google Scholar 

  30. Haeberlé O, Rullhusen P, Salomé JM, Maene N (1994) Phys Rev E 49:3340

    Article  Google Scholar 

  31. Zhong R, Liu W, Zhou J, Liu S (2012) Chin. Phys. B 21:117303

    Article  Google Scholar 

  32. Bigelow NW, Vaschillo A, Iberi V, Camden JP, Masiello DJ (2012) ACS Nano 6(8):7497–7504

    Article  CAS  Google Scholar 

  33. Geuquet N, Henrard L (2010) Ultramicroscopy 110(8):1075–1080

    Article  CAS  Google Scholar 

  34. Urata J, Goldstein M, Kimmitt MF, Naumov A, Platt C, Walsh JE (1998) Phys Rev Lett 80 (3):516–519

    Article  CAS  Google Scholar 

  35. CST Corp., CST PS Tutorials. http://www.cstchina.cn/

  36. Zhou J, Liu D, Liao C, Li Z (2009) IEEE Trans Plasma Sci 37:2002

    Article  Google Scholar 

  37. Potylitsyn AP (2011) Diffraction radiation from relativistic particles. Springer-Velag

  38. van den Berg PM (1973) J Opt Soc Am 63:689

    Article  Google Scholar 

  39. Karlovets DV, Potylitsyn AP (2005) Phys Rev ST Accel Beams 9:080701

  40. Chamberlain O, Segre E, Wiegand C, Ypsilantis T (1955) Phys Rev 100:947

    Article  CAS  Google Scholar 

  41. Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu BI, Kong JA, Chen M (2009) Phys Rev Lett 103(19):194801

    Article  Google Scholar 

  42. Luo C, Ibanescu M, Johnson SG, Joannopoulos JD (2003) Science 299:368

    Article  CAS  Google Scholar 

  43. Vorobev VV, Tyukhtin AV (2012) Phys Rev Lett 108:184801

    Article  Google Scholar 

  44. Fernandes DE, Maslovski SI, Silveirinha MG (2012) Phys Rev B 85:155107

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China (Grants No. 61471332 and No. U1632150) Anhui Provincial Natural Science Foundation (Grant No. 1508085QF113), and the Fundamental Research Funds for the Central Universities (Grant No. WK2310000059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W. Controllable Steering and Tuning of Surface Plasmons on the Metallic Nano-film with Nanoslits Array. Plasmonics 13, 915–919 (2018). https://doi.org/10.1007/s11468-017-0588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0588-z

Keywords

Navigation