Skip to main content
Log in

Theoretical Differential Phase Analysis for Characterization of Aqueous Solution Using Surface Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR)-based differential phase analysis has been presented. Real as well as complex plane analysis of resonance parameters have been undertaken for the optimum selection of metal thicknesses in a bimetallic SPR configuration working under both angular and spectral regime. Theoretically, we can characterize the aqueous solution in terms of this differential phase variation due to the variation of sample parameters such as concentration and temperature. In this respect, two case studies, namely, concentration of hemoglobin in human blood and sensing of temperature of water have been demonstrated and proposed theoretically. By monitoring the change of differential phase, proposed approach leads to a very sensitive measurement of concentration and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398–410

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch 23A:2135–2136

    Google Scholar 

  3. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B54:3–15

    Article  Google Scholar 

  4. Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B54:16–24

    Article  Google Scholar 

  5. Piliarik M, Homola J (2006) Surface plasmon resonance based sensors. Edited by O. S. Wolfbeis Springer-Verlag, Berlin 4:45–68.

  6. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  7. Nelson SG, Johnston KS, Yee SS (1996) High sensitivity surface plasmon resonance sensor based on phase detection. Sens Actuators B Chem 35–36:187–191

    Article  Google Scholar 

  8. Nikitin PI, Beloglazov AA, Kochergin EV, Valeiko VM, Ksenevich IT (1999) Surface plasmon resonance interferometry for biological and chemical sensing. Sensors Actuators B Chem 54:43–50

    Article  CAS  Google Scholar 

  9. Kabashin AV, Nikitin PI (1998) Surface plasmon resonance interferometer for bio- and chemical- sensors. Opt Commun 150:5–8

    Article  CAS  Google Scholar 

  10. Grigorenko NA, Nikitin PI, Kabashin VA (1999) Phase jumps and interferometric surface plasmon resonance imaging. Appl Phy Lett 75:3917–3919

    Article  CAS  Google Scholar 

  11. Ho HP, Lam WW (2003) Application of differential phase measurement technique to surface plasmon resonance sensors. Sensors Actuators B Chem 96:554–559

    Article  CAS  Google Scholar 

  12. Notcovich GA, Zhuk V, Lipson GS (2000) Surface plasmon resonance phase imaging. Appl Phys Lett 76:1665–1667

    Article  CAS  Google Scholar 

  13. Huang YH, Ho HP (2012) Wu S Y. Kong S K Adv Opt Technol 1–12

  14. Bera M, Banerjee J, Ray M (2014) Experimental surface plasmon resonance modulated radially sheared interference imaging using a birefringent lens. Appl Phys Lett 104(25):251104–1-5. doi:10.1063/1.4884815

    Article  Google Scholar 

  15. Bera M, Banerjee J, Ray M (2015) Moiré pattern generation by dual shearing and its modulation by surface plasmon resonance. Opt Lett 40(8):1857–1860

    Article  Google Scholar 

  16. Ng SP, Wu CML, Wu SY, Ho HP, Kong SK (2010) Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing. Biosens Bioelectron 26:1593–1598

    Article  CAS  Google Scholar 

  17. Ray M, Bera M, Brahmachari K, Ghosh S, Rajak S (2015) Surface plasmon resonance-based devices: simulations, design, and applications in computational optical biomedical spectroscopy and imaging. S. Musa, Ed 261–326, CRC Press, New York

  18. Bera M, Banerjee J, Ray M (2014) Resonance parameters based analysis for metallic thickness optimization of a bimetallic plasmonic structure. J Mod Opt 61(3):182–196. doi:10.1080/09500340.2013.878043

    Article  CAS  Google Scholar 

  19. El-Kashef H, Hassan GE, El-Ghazaly I (1994) Mach-Zehnder optical system as a sensitive measuring instrument. Appl Opt 33(16):3540–3544

    Article  CAS  Google Scholar 

  20. Chiang H-P, Wang YC, Leung PT, Tse WS (2001) A theoretical model for the temperature dependent sensitivity of the optical sensor based on surface plasmon resonance. Opt Commun 188:283–289

    Article  CAS  Google Scholar 

  21. Chiang HP, Wang YC, Leung PT (2003) Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy. Thin Solid Films 425:135–138

    Article  CAS  Google Scholar 

  22. Chiang HP, Yeh HT, Chen CM, Wu JC, Su SY, Chang R, Wu YJ, Tsai DP, Jen SU, Leung PT (2004) Surface plasmon resonance monitoring of temperature via phase measurement. Opt Commun 241:409–418

    Article  CAS  Google Scholar 

  23. Chiang HP, Chen CW, Wu JJ, Li HL, Lin TY, Sánchez EJ, Leung PT (2007) Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface. Thin Solid Films 515:6953–6961

    Article  CAS  Google Scholar 

  24. Özdemir SK, Turhan-Sayan G (2003) Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor. J Lightwave Technol 21(3):805–814

    Article  Google Scholar 

  25. Moreira CS, Lima AMN, Neff H, Thirstrup C (2008) Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold–water interface. Sensors Actuators B 134:854–862

    Article  CAS  Google Scholar 

  26. Ong BH, Yuan X, Tjin SC, Zhang J, Ng HM (2006) Optimized film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sens Actuators B114:1028–1034

    Article  Google Scholar 

  27. Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge Univ. Press, Cambridge U.K.

    Book  Google Scholar 

  28. Banerjee J, Bera M, Ray M (2015) Simultaneous excitation of multi-spectral surface plasmon resonance using multi-stepped-thickness metallic film. Journal of Appl Physics 117(113102):–13

  29. Bera M, Banerjee J, Ray M (2015) Surface plasmon resonance mediated fringe modulation using a birefringent lens creating radial shearing environment. J Opt Soc Am B 32(5):961–970

    Article  CAS  Google Scholar 

  30. Zhernovaya O, Sydoruk O, Tuchin V, Douplik A (2011) The refractive index of human hemoglobin in the visible range. Phys Med Biol 56:4013–4021. doi:10.1088/0031-9155/56/13/017

    Article  CAS  Google Scholar 

  31. Bashkatov A N, Genina E A (2003) Water refractive index in dependence on temperature and wavelength: a simple approximation. Proc. of SPIE 5068:393–395.

Download references

Acknowledgements

J. Banerjee would like to acknowledge the Department of Science & Technology, Government of India for financial support (Ref. No.SR/WOS-A/PM-1015/2015 (G) dated 11/07/2016) under the Women Scientist Scheme.

M. Bera would like to acknowledge the Council of Scientific and Industrial Research (CSIR), India, for providing the Senior Research Fellowship (SRF) for the execution of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, J., Bera, M. & Ray, M. Theoretical Differential Phase Analysis for Characterization of Aqueous Solution Using Surface Plasmon Resonance. Plasmonics 12, 1787–1796 (2017). https://doi.org/10.1007/s11468-016-0446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0446-4

Keywords

Navigation