Skip to main content
Log in

Plasmonic biosensor for the study of blood diseases by analysis of hemoglobin concentration

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The plasmonic materials and phenomena are widely studies and applied in multiple fields for an extended time. One among the foremost promising applications is within the engineering of biosensor devices, Diseases of the red blood cells are among the diseases of the blood. Anemia as an example is an abnormal reduction within the concentration of hemoglobin within the blood. When the amount of red blood cells decreases, so does the concentration of hemoglobin. The tissues and organs not receive sufficient oxygen to work normally. This numerical study will give a contribution or approach on the behaviour of blood with surface plasmons resonance SPR by analysing the performance of SPR with any changes in hemoglobin concentrations (refractive index) for the application of technique in the detection of blood diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ambartsumyan, O., Gribanyov, D., Kukushkin, V., Kopylov, A.: SERS-based biosensors for virus determination with Oligonucleotides as recognition elements. Int. J. Mol. Sci. 21(9), pp.1–15, (2020)

  2. Belkin, S., Roda, A.: Handbook of Cell Biosensors. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-319-47405-2

    Book  Google Scholar 

  3. Bhavsar, K., Prabhu, R.: Investigations on sensitivity enhancement of SPR biosensor using tunable wavelength and graphene layers. IOP Conf. Ser. Mater. Sci. Eng. 499(1) (2019). doi: https://doi.org/10.1088/1757-899X/499/1/012008

  4. Biran, I., Rissin, D.M., Ron, E.Z., Walt, D.R.: Optical imaging fiber-based live bacterial cell array biosensor. Anal. Biochem. 315(1), 106–113 (2003). doi: https://doi.org/10.1016/S0003-2697(02)00700-5

    Article  Google Scholar 

  5. Chen, C., Wang, J.: Optical biosensors: an exhaustive and comprehensive review. Analyst. 145(5), 1605–1628 (2020). doi: https://doi.org/10.1039/C9AN01998G

    Article  ADS  Google Scholar 

  6. Chen, S., Lin, C.: Sensitivity comparison of graphene based surface plasmon resonance biosensor with au, Ag and Cu in the visible region. Mater. Res. Express. 6(5), 056503 (2019). https://doi.org/10.1088/2053-1591/ab009d

  7. Damborský, P., Švitel, J., Katrlík, J.: Optical biosensors. Essays Biochem. 60(1), 91–100 (2016). doi: https://doi.org/10.1042/EBC20150010

    Article  Google Scholar 

  8. Friebel, M., Meinke, M.: Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration. Appl. Opt. 45(12), 2838–2842 (2006). doi: https://doi.org/10.1364/AO.45.002838

    Article  ADS  Google Scholar 

  9. Grumann, J.D.M., Dube, M., Brefka, T., Steigert, J., Riegger, L., Brenner, T., Mittmann, K., “Direct hemoglobin measurement by monolithically integrated optical beam guidance. 13th International Conference of Solid-State Sensors, Actuators Microsystems, June 5–9, Seoul, Korea. 2, pp. 1106–1109 (2005)

  10. Guerrini, L., Garcia-Rico, E., O’Loghlen, A., Giannini, V., Alvarez-Puebla, R.A.: Surface-enhanced Raman scattering (SERS) spectroscopy for sensing and characterization of exosomes in cancer diagnosis. Cancers. 13(9) (2021). https://doi.org/10.3390/cancers13092179

  11. Hegde, G.: Investigations on sensitivity enhancement of SPR biosensor using tunable wavelength and graphene layers Investigations on sensitivity enhancement of SPR biosensor using tunable wavelength and graphene layers. In IOP Conference Series: Materials Science and Engineering https://doi.org/10.1088/1757-899X/499/1/012008

  12. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008). doi: https://doi.org/10.1021/cr068107d

    Article  Google Scholar 

  13. Isaacs, S., Abdulhalim, I.: Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach. Appl. Phys. Lett. 106(19) (2015). https://doi.org/10.1063/1.4921200

  14. Jia, K., Eltzov, E., Toury, T., Marks, R.S., Ionescu, R.E.: A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol. Environ. Saf. 84, 221–226 (2012). https://doi.org/10.1016/j.ecoenv.2012.07.009

  15. Johansen, K., Arwin, H., Lundström, I., Liedberg, B.: Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations. Rev. Sci. Instrum. 71(9), 3530–3538 (2000). doi: https://doi.org/10.1063/1.1287631

    Article  ADS  Google Scholar 

  16. Khansili, N., Rattu, G., Krishna, P.M.: Sensors and actuators B: chemical label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 265, 35–49 (2018). doi: https://doi.org/10.1016/j.snb.2018.03.004

    Article  Google Scholar 

  17. Kumar, S., Singh, R.: Recent optical sensing technologies for the detection of various biomolecules: review. Optics and Laser Technology, vol. 134, Elsevier Ltd., Amsterdam, p. 106620, (2020). https://doi.org/10.1016/j.optlastec.2020.106620

  18. Li, X., Chen, N., Zhou, X., Gong, P.: A review of specialty fiber biosensors based on interferometer configuration. no. March. 1–19 (2021). doi: https://doi.org/10.1002/jbio.202100068

  19. Liang, X., et al.: Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Mater. 13(1), 8 (2021). doi: https://doi.org/10.1038/s41427-020-00278-5

    Article  ADS  Google Scholar 

  20. Lukose, J., Chidangil, S., George, S.D.: Optical technologies for the detection of viruses like COVID-19: progress and prospects. Biosensors and Bioelectronics, vol. 178, Elsevier B.V., Amsterdam, p. 113004, (2021). https://doi.org/10.1016/j.bios.2021.113004

  21. Maddali, H., Miles, C.E., Kohn, J., O’Carroll, D.M.: Optical biosensors for virus detection: prospects for SARS-CoV-2/COVID-19. ChemBioChem. 22(7), 1176–1189 (2021). https://doi.org/10.1002/cbic.202000744

    Article  Google Scholar 

  22. Muhammad, M., Huang, Q.: A review of aptamer-based SERS biosensors: design strategies and applications. Talanta  227 (2020). Elsevier B.V., Amsterdam, p. 122188 (2021). https://doi.org/10.1016/j.talanta.2021.122188

  23. Naresh, V., Lee, N.: A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sens. Switz. 21(4), 1–35 (2021). https://doi.org/10.3390/s21041109

    Article  Google Scholar 

  24. Park, J.H., Cho, Y.W., Kim, T.H.: Recent advances in surface Plasmon resonance sensors for sensitive optical detection of pathogens. Biosensors. 12(3) (2022). https://doi.org/10.3390/bios12030180

  25. Prahl, S.: Optical absorption of hemoglobin. Oregon Med. Laser Cent, vol. 15, pp. 770–774, [Online]. Available: (1999). http://omlc.ogi.edu/spectra/hemoglobin.

  26. R. Barer, Refractometry and interferometry of living cells. J. Opt. Soc. Am. 47(6), pp.545–556, (1957). https://doi.org/10.1364/JOSA.47.000545

  27. Safina, G., Duran, I.B., Alasel, M., Danielsson, B.: Surface plasmon resonance for real-time study of lectin–carbohydrate interactions for the differentiation and identification of glycoproteins. Talanta. 84(5), 1284–1290 (2011). doi: https://doi.org/10.1016/j.talanta.2011.01.030

    Article  Google Scholar 

  28. Safina, G.: Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review. Analytica Chimica Acta, vol. 712. Elsevier B.V., Amsterdam, pp. 9–29, (2012). https://doi.org/10.1016/j.aca.2011.11.016

  29. Schasfoort, R.B.M. (ed): Handbook of Surface Plasmon Resonance, 2nd Edn. Royal Society of Chemistry, Cambridge (2017). https://doi.org/10.1039/9781788010283

  30. Sharma, A.K.: Plasmonic biosensor for detection of hemoglobin concentration in human blood: design considerations. J. Appl. Phys. 114(4) (2013). https://doi.org/10.1063/1.4816272

  31. Sharma, A.K., Jha, R., Pattanaik, H.S.: Design considerations for surface plasmon resonance based detection of human blood group in near infrared. J. Appl. Phys. 107(3) (2010). https://doi.org/10.1063/1.3298503

  32. Sharma, A.K.: Plasmonic biosensor for detection of hemoglobin concentration in human blood: design considerations. J. Appl. Phys. 114(4), 044701 (2013). https://doi.org/10.1063/1.4816272

  33. Taitt, C.R., Anderson, G.P., Ligler, F.S.: Evanescent wave fluorescence biosensors: advances of the last decade. Biosens. Bioelectron. 76, 103–112 (2016). https://doi.org/10.1016/j.bios.2015.07.040

  34. Tang, Y., Zeng, X., Liang, J.: Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Educ. 87(7), 742–746 (2010). doi: https://doi.org/10.1021/ed100186y

    Article  Google Scholar 

  35. Taparia, N., Platten, K.C., Anderson, K.B., Sniadecki, N.J.: A microfluidic approach for hemoglobin detection in whole blood. AIP Adv. 7(10) (2017). https://doi.org/10.1063/1.4997185

  36. Walter, J.G., Eilers, A., Alwis, L.S.M., Roth, B.W., Bremer, K.: Spr biosensor based on polymer multi-mode optical waveguide and nanoparticle signal enhancement. Sens. (Switzerland). 20(10), 1–11 (2020). doi: https://doi.org/10.3390/s20102889

    Article  Google Scholar 

  37. Yadav, S., et al.: SERS based lateral flow immunoassay for point-of-care detection of SARS-CoV-2 in clinical samples. A4CS Appl. Bio. Mater.4, pp. 2974–2995 (2021). https://doi.org/10.1021/acsabm.1c00102

  38. Zajíc, J., Ripp, S., Trögl, J., Kuncová, G., Pospíšilová, M.: Repetitive detection of aromatic hydrocarbon contaminants with bioluminescent bioreporters attached on tapered optical fiber elements. Sens. Basel. 20(11), 3237 (Jun. 2020). doi: https://doi.org/10.3390/s20113237

  39. Zaytseva, N., Miller, W., Goral, V., Hepburn, J., Fang, Y.: Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl. Phys. Lett, vol. 98, no. 16, p. 163703, Apr. doi: (2011). https://doi.org/10.1063/1.3582611

    Article  ADS  Google Scholar 

  40. Zhang, W., Jiang, L., Piper, J.A., Wang, Y.: SERS Nanotags and their applications in Biosensing and Bioimaging. J. Anal. Test 2(4), 26–44 (2018). https://doi.org/10.1007/s41664-018-0053-9

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

H.I.M. reports article publishing charges was provided by University of Ferhat Abbas Setif 1 Institute of Optics and Precision Mechanics. H.M.I. reports a relationship with University of Ferhat Abbas Setif 1 Institute of Optics and Precision Mechanics that includes: board membership. Teacher Researcher at Mohamed Boudiaf University of Msila.

Corresponding author

Correspondence to Mohamed Ilyes Habia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The paper was prepared and approved by all the authors. They are all aware of its contents and approve its submission to the Optical and Quantum Electronics. In addition, they state that this manuscript has not been published and that there are no plans to publish it elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habia, M.I., Manallah, A. & Ayadi, K. Plasmonic biosensor for the study of blood diseases by analysis of hemoglobin concentration. Opt Quant Electron 55, 234 (2023). https://doi.org/10.1007/s11082-022-04503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04503-z

Keywords

Navigation