Skip to main content
Log in

Highly Sensitive Biochemical Sensor Based on Two-Layer Dielectric Loaded Plasmonic Microring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose and design a highly sensitive optical biochemical sensor based on two-layer dielectric loaded surface plasmon polariton waveguide (TDLSPPW)-based microring resonator (MRR). By optimizing the structure parameters, the propagation length of the proposed waveguide is ~126 μm, which is about 3 times of that of the polymer dielectric loaded surface plasmon polariton waveguide (DLSPPW) reported. It is demonstrated that the TDLSPPW-based MRR is operated at the under-coupling state, along with the quality factor (Q) of 541.2 and extinction ratio (ER) of 12.2 dB. Moreover, the Q and ER are much more sensitive to the structure parameters of the waveguide, including the waveguide width w, total thickness t, and coupling gap W gap, compared to the low refractive index (RI) layer thickness t 2. The simulation results on the biochemical RI sensing show that the sensitivities of 408.7 and 276.4 nm/RIU for glucose concentration in urine and chemical gases can be achieved, respectively. It is believed that the proposed sensor has potential applications in photonic-integrated biochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maier SA (2010) Plasmonics-fundamentals and applications, vol 52. Springer, Berlin, pp. 49–74

    Google Scholar 

  2. Steinberger B, Hohenau A, Ditlbacher H, Stepanov AL (2006) Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett 88:094104

    Article  Google Scholar 

  3. Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405

    Article  Google Scholar 

  4. Zhu Z, Garcia-Ortiz CE, Han Z, Radko IP, Bozhevolnyi SI (2013) Compact and broadband directional coupling and demultiplexing in dielectric-loaded surface plasmon polariton waveguides based on the multimode interference effect. Appl Phys Lett 103:061108

    Article  Google Scholar 

  5. Hassan K, Leroy F, Colasdesfrancs G, Weeber JC (2014) Dihedron dielectric loaded surface plasmon athermal polarization converter. Opt Lett 39:697–700

    Article  CAS  Google Scholar 

  6. Fan H, Berini P (2016) Bulk sensing using a long-range surface-plasmon dual-output Mach-Zehnder interferometer. J Lightwave Technol 34:2631–2638

    Article  Google Scholar 

  7. Papaioannou S, Giannoulis G, Vyrsokinos K, Leroy F, Zacharatos F, Markey L, Weeber JC, Dereux A, Bozhevolnyi SI, Prinzen A, Apostolopoulos D, Avramopoulos H, Pleros N (2015) Ultracompact and low-power plasmonic MZI switch using Cyclomer loading. IEEE Photonic Tech. L. 27:963–966

    Article  CAS  Google Scholar 

  8. Hsieh CH, Lin KP, Leou KC (2015) Design of a compact high performance electro-optic plasmonic switch. IEEE Photonic Tech L 27:2473–2476

    Article  CAS  Google Scholar 

  9. Gosciniak J, Bozhevolnyi SI (2013) Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Scientific Reports 3:1803

    Article  Google Scholar 

  10. Li Y, Ma A, Yang L, Zhang X (2014) Highly sensitive refractive index sensing with surface plasmon polariton waveguides. Plasmonics 9:71–78

    Article  Google Scholar 

  11. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  12. Ma Y, Farrell G, Semenova Y, Chan HP, Zhang H, Wu Q (2013) Novel dielectric-loaded plasmonic waveguide for tight-confined hybrid plasmon mode. Plasmonics 8:1259–1263

    Article  CAS  Google Scholar 

  13. Tsilipakos O, Yioultsis TV, Kriezis EE (2009) Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J Hazard Mater 106:93109

    Google Scholar 

  14. Chu HS, Akimov YA, Bai P, Li EP (2011) Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale. J Opt Soc Am B 28:2895–2901

    Article  CAS  Google Scholar 

  15. Gosciniak J, Volkov VS, Bozhevolnyi SI, Markey L, Massenot S, Dereux A (2010) Fiber-coupled dielectric-loaded plasmonic waveguides. Opt Express 18:5314–5319

    Article  CAS  Google Scholar 

  16. Berini P (2009) Long-range surface plasmon polaritons. Advances in Optics & Photonics 1:484–588

    Article  CAS  Google Scholar 

  17. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496–500

    Article  CAS  Google Scholar 

  18. Ma Y, Farrell G, Semenova Y, Wu Q (2014) Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement. Opt Lett 39:973–976

    Article  CAS  Google Scholar 

  19. Pan MY, Lin EH, Wang L, Wei PK (2013) Enhancing surface plasmon polariton propagation by two-layer dielectric-loaded waveguides on silver surface. Applied Physics A 115:93–98

    Article  Google Scholar 

  20. Lide DR (2002) CRC handbook of chemistry and physics, 83rd edn. CRC Press, Boca Raton FL

    Google Scholar 

  21. Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96:221103

    Article  Google Scholar 

  22. Xiao-Yang Z, Hu A, Wen JZ, Tong Z, Xiao-Jun X, Zhou Y, Duley WW (2010) Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides. Opt Express 18:18945–18959

    Article  Google Scholar 

  23. Yamamoto T, Koshiba M (1993) Numerical analysis of curvature loss in optical waveguides by the finite-element method. J Lightwave Technol 11:1579–1583

    Article  Google Scholar 

  24. Oulton RF, Bartal G, Pile DFP, Zhang X (2008) Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys 10:119–125

    Article  Google Scholar 

  25. Ciminelli C, Campanella CM, Dell Olio F, Campanella CE, Armenise MN (2013) Label-free optical resonant sensors for biochemical applications. Prog Quant Electron 37:51–107

    Article  Google Scholar 

  26. White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16:1020–1028

    Article  Google Scholar 

  27. Tseng C, Tsai C, Lin K, Lee M, Chen Y (2013) Study of coupling loss on strongly-coupled, ultra compact microring resonators. Opt Express 21:7250–7257

    Article  Google Scholar 

  28. Prinzen A, Waldow M, Kurz H (2013) Fabrication tolerances of SOI based directional couplers and ring resonators. Opt Express 21:17212–17220

    Article  Google Scholar 

  29. Sharma P, Sharan P (2015) Design of photonic crystal-based biosensor for detection of glucose concentration in urine. IEEE Sensors J 15:1035–1042

    Article  CAS  Google Scholar 

  30. De VK, Bartolozzi I, Schacht E, Bienstman P, Baets R (2007) Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt Express 15:7610–7615

    Article  Google Scholar 

  31. Pandeeswari R, Jeyaprakash BG (2014) Nanostructured α-MoO3 thin film as a highly selective TMA sensor. Biosens Bioelectron 53:182–186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (61307109 and 61475023), the Beijing Youth Top-notch Talent Support Program (2015000026833ZK08), the Natural Science Foundation of Beijing (4152037), the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT) P. R. China (IPOC2016ZT05), the Hong Kong Scholars Program 2013 (PolyU G-YZ45), the Key scientific and technological project of Henan province (132102210043), and Youth Scientific Funds of Henan Normal University (2011QK08 and 2012QK08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Yuan, J., Sun, L. et al. Highly Sensitive Biochemical Sensor Based on Two-Layer Dielectric Loaded Plasmonic Microring Resonator. Plasmonics 12, 1417–1424 (2017). https://doi.org/10.1007/s11468-016-0401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0401-4

Keywords

Navigation