Skip to main content
Log in

Influence of Dielectric Coating on Performance of Surface Plasmon Resonance Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the present study, the nature of dielectric layer above metal layer in surface plasmon resonance sensor is investigated. The performance-defining parameters, i.e., shift in resonance angle, half width at half maximum, and minimum reflection intensity, are investigated according to the variation of refractive index (real as well as imaginary) of dielectric layer. Moreover, these parameters are investigated according to the thickness variation of the dielectric layer at different purely real as well as complex refractive index of the dielectric layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kravets VG, Jalil R, Kim YJ, Ansell D, Aznakayeva DE, Thackray B, Belle BD, Withers F, Radko IP, Han Z, Bozhevolnyi SI, Novoselov KS, Geim AK, Grigorenko AN (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4

  2. Shalabney A, Abdulhalim I (2010) Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors Actuators A: Phys 159(1):24–32

    Article  CAS  Google Scholar 

  3. Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci 72(3):577–588

    Article  CAS  Google Scholar 

  4. Sreekanth KV, Zeng S, Shang J, Yong KT, Yu T (2012) Excitation of surface electromagnetic waves in a graphene-based Bragg grating. Scientific reports 2:737

    Article  Google Scholar 

  5. Xing F, Liu ZB, Deng ZC, Kong XT, Yan XQ, Chen XD, Ye Q, Zhang CP, Chen YS, Tian JG (2012) Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor. Sci Rep 2

  6. Pozo AM, Pérez-Ocón F, Rabaza O (2016) A continuous liquid-level sensor for fuel tanks based on surface plasmon resonance. Sensors 16(5):724

    Article  Google Scholar 

  7. Sreekanth KV, Zeng S, Yong KT, Yu T (2013) Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sensors Actuators B Chem 182:424–428

    Article  CAS  Google Scholar 

  8. Mejard R, Thierry B (2014) Systematic study of the surface Plasmon resonance signals generated by cells for sensors with different characteristic lengths. PLoS One 9(10):e107978

    Article  Google Scholar 

  9. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Springer, Z. Naturforsch 23(A):2135–2136

  10. Li HH (1980) Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J Phys Chem Ref Data 9(1):161–290

    Article  CAS  Google Scholar 

  11. Li HH (1976) Refractive index of alkali halides and its wavelength and temperature derivatives. J Phys Chem Ref Data 5(2):329–528

    Article  CAS  Google Scholar 

  12. Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica. JOSA 55(10):1205–1208

    Article  CAS  Google Scholar 

  13. Bond WL (1965) Measurement of the refractive indices of several crystals. J Appl Phys 36(5):1674–1677

    Article  CAS  Google Scholar 

  14. Zelmon DE, Small DL, Jundt D (1997) Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate. JOSA B 14(12):3319–3322

    Article  CAS  Google Scholar 

  15. Barker JAS, Ilegems M (1973) Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B 7(2):743

    Article  CAS  Google Scholar 

  16. DeVore JR (1951) Refractive indices of rutile and sphalerite. JOSA 41(6):416–419. doi:10.1364/JOSA.41.000416

  17. Kato K, Umemura N (2011) Sellmeier equations for GaS and GaSe and their applications to the nonlinear optics in GaS x Se 1− x. Opt Lett 36(5):746–747

    Article  CAS  Google Scholar 

  18. Aspnes DE, Studna AA (1983) Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev. Phys Rev B 27(2):985

    Article  CAS  Google Scholar 

  19. Skorobogatiy M (2012) Nanostructured and subwavelength waveguides: fundamentals and applications. John Wiley & Sons

  20. Verma A, Prakash A, Tripathi R (2015) Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt Quant Electron 47(5):1197–1205

    Article  CAS  Google Scholar 

  21. Raether H (1988) Surface plasmons on smooth and rough surfaces and on grating. Springer Berlin Heidelberg

  22. Maurya JB, Prajapati YK, Singh V, Saini JP (2015) Sensitivity enhancement of surface Plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer. Appl Phys A-Mater Sci Process 121(2):525–533

    Article  CAS  Google Scholar 

  23. Maurya JB, Prajapati YK, Singh V, Saini JP, Tripathi R (2015) Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt Quant Electron 47(11):3599–3611

    Article  CAS  Google Scholar 

  24. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031901

    Article  Google Scholar 

  25. Liu HL, Shen CC, Su SH, Hsu CL, Li MY, Li LJ (2014) Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl Phys Lett 105(20):201905

    Article  Google Scholar 

Download references

Acknowledgments

The present work is partially supported by the department of science and Technology (DST), New Delhi, India under the fast track young scientist scheme no. SB/FTP/ETA-0478/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Prajapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, J.B., Prajapati, Y.K. Influence of Dielectric Coating on Performance of Surface Plasmon Resonance Sensor. Plasmonics 12, 1121–1130 (2017). https://doi.org/10.1007/s11468-016-0366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0366-3

Keywords

Navigation