Skip to main content
Log in

Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present and numerically characterize a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor. By adjusting the air hole sizes of the PCF, the effective refractive index (RI) of core-guided mode can be tuned effectively and the sensor exhibits strong birefringence. Alternate holes coated with graphene-Ag bimetallic layers in the second layer are used as analyte channels, which can avoid adjacent interference and improve the signal to noise ratio (SNR). The graphene’s good features can not only solve the problem of silver oxidation but also increase the absorption of molecules. We theoretically analyze the influence of the air hole sizes of the PCF and the thicknesses of graphene layer and Ag layer on the performance of the designed sensor using wavelength and amplitude interrogations. The wavelength sensitivity we obtained is as high as 2520 nm/RIU with the resolution of 3.97 × 10−5 RIU, which can provide a reference for developing a high-sensitivity, real-time, fast-response, and distributed SPR sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta BD, Verma RK (2009) Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J Sens 2009:1–12

    Article  Google Scholar 

  2. Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4(83):299–304

    Article  CAS  Google Scholar 

  3. Lam WW, Chu LH, Wong CL, Zhang YT (2005) A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensors Actuators B 105:138–143

    Article  CAS  Google Scholar 

  4. Ekgasit S, Tangcharoenbumrungsuk A, Yu F, Baba A, Knoll W (2005) Resonance shifts in SPR curves of nonabsorbing, weakly absorbing, and strongly absorbing dielectrics. Sensors Actuators B 105(2):532–541

    Article  CAS  Google Scholar 

  5. Verma A, Prakash A, Tripathi R (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun 357:106–112

    Article  CAS  Google Scholar 

  6. Fu HY, Zhang SW, Chen H, Weng J (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens J 15(10):5478–5482

    Article  Google Scholar 

  7. Rezaei N, Yahaghi A (2014) A high sensitivity surface Plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization. IEEE Sensors J 14(10):3611–3615

    Article  Google Scholar 

  8. Kanso M, Cuenot S, Louarn G (2007) Roughness effect on the SPR measurement for an optical fiber configuration: experimental and numerical approaches. J Opt A Pure Appl Opt 9(7):586–592

    Article  Google Scholar 

  9. Moayyed H, Leite IT, Coelho L, Santos JL, Viegas D (2014) Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers. IEEE Sensors J 14(10):3662–3668

    Article  Google Scholar 

  10. Yang XC, Lu Y, Wang MT, Yao JQ (2016) SPR sensor based on exposed-core grapefruit fiber with bimetallic structure. IEEE Photon Technol Lett 28(6):649–652

    Article  Google Scholar 

  11. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on SPR. Opt Express 18(14):14395–14400

    Article  CAS  Google Scholar 

  12. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308

    Article  CAS  Google Scholar 

  13. Wu ZQ, Chen XD, Zhu SB, Zhou ZW, Yao Y, Quan W, Liu B (2013) IEEE Sensors J 13(2):777–782

    Article  CAS  Google Scholar 

  14. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  15. Ortigosa-Blanch A, Knight JC, Wadsworth WJ, Arriaga J, Mangan BJ, Birks TA, Russell PSJ (2000) Highly birefringent photonic crystal fibers. Opt Lett 25(18):1325–1327

    Article  CAS  Google Scholar 

  16. Zhao CL, Yang XF, Lu C, Jin W, Demokan MS (2004) Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photon Technol Lett 16(11):2535–2537

    Article  Google Scholar 

  17. Xue JR, Li SG, Xiao YZ, Qin W, Xin XJ, Zhu XP (2013) Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt Express 21(11):13733–13740

    Article  Google Scholar 

  18. Li H, Li SG, Chen HL, Li JS, An GW, Zi JC (2015) A polarization filter based on photonic crystal fiber with asymmetry around gold-coated holes. Plasmonics 11(1):103–108

    Article  CAS  Google Scholar 

  19. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10(5):1123–1131

    Article  CAS  Google Scholar 

  20. Yu X, Zhang Y, Pan SS, Shum P, Yan M, Leviatan Y, Li C (2010) A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt 12(1):015005

    Article  Google Scholar 

  21. Peng Y, Hou J, Huang ZH, Lu QS (2012) Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl Opt 51(26):6361–6367

    Article  Google Scholar 

  22. Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19(2):458–466

    Article  CAS  Google Scholar 

  23. Dash JN, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon Technol Lett 26(11):1092–1095

    Article  CAS  Google Scholar 

  24. Sazio PJA, Adrian AC, Finlayson CE, Hayes JR et al (2006) Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767):1583–1586

    Article  CAS  Google Scholar 

  25. Harrington JA (2000) A review of IR transmitting, hollow wave-guides. Fiber Integr Opt 19(19):211–227

    Article  CAS  Google Scholar 

  26. Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100:1–5

    Article  Google Scholar 

  27. Liang X, Fu Z, Chou SY (2007) Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett 7(12):3840–3844

    Article  CAS  Google Scholar 

  28. Zhang X, Wang R, Cox FM, Kuhlmey BT, Large MCJ (2007) Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt Express 15(24):16270–16278

    Article  CAS  Google Scholar 

  29. Peng Y, Hou J, Zhang Y, Huang ZH, Xiao R, Lu QS (2013) Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt Lett 38(3):263–265

    Article  Google Scholar 

  30. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  Google Scholar 

  31. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  32. Luan NN, Wang R, Lv WH, Yao JQ (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23(7):8576–8582

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (grant number: 2010CB327801)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lu, Y., Liu, B. et al. Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance. Plasmonics 12, 489–496 (2017). https://doi.org/10.1007/s11468-016-0289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0289-z

Keywords

Navigation