Skip to main content
Log in

Graphene-Au-Coated Plasmonic Sensor Based on D-Shaped Bezier Polygonal Hollow Core Photonic Crystal Fiber

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A D-shaped photonic crystal fiber (PCF)-based plasmonic sensor is proposed for detecting refractive index (RI) variations within the range of 1.33–1.38. The center hollow core has formed using Bezier curves, which confines light within the core by the principle of photonic band gaps. An analyte is injected into a core to adjust its refractive index. Light propagating in the air core is affected by the analyte filled in the core, causing plasmon waves to be produced on the metal surface. On top of this structure, a chemically stable gold (Au) metal layer is placed as a plasmonic material. Numerical studies are carried out using the finite element method (FEM). The gold layer thickness is optimized and obtained an average sensitivity of 5600 nm/RIU. The sensor’s sensitivity is enhanced by sandwiching graphene between an analyte and a gold film. The average sensitivity of the sensor increases by 2000 nm/RIU after graphene is incorporated, having reached 7600 nm/RIU according to the results obtained. The sensor can efficiently detect slight variations in the analyte indices and, thus, it is used in various chemical and biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Yang, L. Zhou, X. Che, J. Huang, X. Li, W. Chen, Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A. Sens. Actuators B Chem. 235, 717–722 (2016). https://doi.org/10.1016/j.snb.2016.05.125

    Article  Google Scholar 

  2. T. Cheng, Z. Duan, M. Liao, W. Gao, D. Deng, T. Suzuki, Y. Ohishi, A simple all-solid tellurite microstructure optical fiber. Opt. Express 21, 3318–3323 (2013). https://doi.org/10.1364/OE.21.003318

    Article  ADS  Google Scholar 

  3. W.C. Wong, C.C. Chan, L.H. Chen, T. Li, K.X. Lee, K.C. Leong, Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement. Sens. Actuators B Chem. 174, 563–569 (2012). https://doi.org/10.1016/j.snb.2012.07.032

    Article  Google Scholar 

  4. H. Chen et al., A novel polarization splitter based on dual-core photonic crystal fiber with a liquid crystal modulation core. IEEE Photon J. 6(4), 2201109 (2014). https://doi.org/10.1109/JPHOT.2014.2337874

    Article  Google Scholar 

  5. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, A. Hale, Microstructure optical fiber devices. Opt. Express 9, 698–713 (2001). https://doi.org/10.1364/OE.9.000698

    Article  ADS  Google Scholar 

  6. X. Zhang, R. Wang, F. Cox, B. Kuhlmey, M. Large, Selective coating of holes in microstructure optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 15, 16270–16278 (2007). https://doi.org/10.1364/OE.15.016270

    Article  ADS  Google Scholar 

  7. A. Hassani, M. Skorobogatiy, Design of the microstructure optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14, 11616–11621 (2006). https://doi.org/10.1364/OE.14.011616

    Article  ADS  Google Scholar 

  8. H.W. Lee, M.A. Schmidt, R.F. Russell, N.Y. Joly, H.K. Tyagi, P. Uebel, P.S.J. Russell, Pressure assisted melt-filling and optical characterization of Au nano-wires in microstructure fibers. Opt. Express 19, 12180–12189 (2011). https://doi.org/10.1364/OE.19.012180

    Article  ADS  Google Scholar 

  9. S. Selvendran, A. Sivanantharaja, S. Yogalakshmi, A highly sensitive Bezier polygonal hollow core photonic crystal fiber biosensor based on surface plasmon resonance. Optik – Int. J. Light and Electron Opt 171, 109–113 (2018). https://doi.org/10.1016/j.ijleo.2018.06.039

    Article  Google Scholar 

  10. S. Yogalakshmi, S Selvendran and A Sivanantha Raja, Design and analysis of a photonic crystal fiber-based polarization filter using surface plasmon resonance. Laser Phys. 26(2016)

    Article  ADS  Google Scholar 

  11. X. Qiang, K. Li, N. Copner, S. Lin, An ultrashort wavelength multi/demultiplexer via rectangular liquid-infiltrated dual-core polymer optical fiber. Materials 12, 1709 (2019). https://doi.org/10.3390/ma12101709

    Article  ADS  Google Scholar 

  12. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces. J. Opt. Soc. 31 (3) 213–222. https://doi.org/10.1364/JOSA.31.000213

  13. M. Chen, T. Lang, B. Cao, Y. Yu, C. Shen, D-type optical fiber immunoglobulin g sensor based on surface plasmon resonance. Opt. Laser Technol. 131, 106445 (2020). https://doi.org/10.1016/j.optlastec.2020.106445

    Article  Google Scholar 

  14. M.N. Sakib, M.B. Hossain, K.F. Al-tabatabaie, I.M. Mehedi, M.T. Hasan, M.A. Hossain, I.S. Amiri, High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Res. Phys. S2211–3797(19)32981-X, https://doi.org/10.1016/j.rinp.2019.102788

  15. E. Haque, M.A. Hossain, F. Ahmed, Y. Namihira, Surface plasmon resonance sensor based on modified d-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sensors J. https://doi.org/10.1109/JSEN.2018.2865514

  16. B. Song, D. Li, W. Qi, M. Elstner, C. Fan, H. Fang, Graphene on Au (111): A highly conductive material with excellent adsorption properties for high-resolution bio/nano detection and identification. Chem. Phys. Chem 11, 585–589 (2010). https://doi.org/10.1002/cphc.200900743

    Article  Google Scholar 

  17. B. Li, T. Cheng, J. Chen, X. Yan, Graphene-enhanced surface plasmon resonance liquid refractive index sensor based on photonic crystal fiber. Sensors 19, 3666 (2019). https://doi.org/10.3390/s19173666

    Article  ADS  Google Scholar 

  18. H. Yang, M. Liu, Y. Chen, L. Guo, G. Xiao, H. Liu, J. Li, L. Yuan, Highly sensitive graphene-Au coated plasmon resonance PCF sensor. Sensors 21, 818 (2021). https://doi.org/10.3390/s21030818

    Article  ADS  Google Scholar 

  19. K. Xie, W. Zhang, A.D. Boardman, H. Jiang, Z. Hu, Y. Liu, M. Xie, Q. Mao, L. Hu, Q. Li, T. Yang, F. Wen, E. Wang, Fiber guiding at the Dirac frequency beyond photonic bandgaps. Light: Sci. Appl. 4 (2015) e304, https://doi.org/10.1038/lsa.2015.77

  20. A.B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel, Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008). https://doi.org/10.1103/PhysRevLett.100.117401

    Article  ADS  Google Scholar 

  21. N. Zhang, K. Li, Y. Cui, Z. Wu, P.P. Shum, J.L. Auguste, X.Q. Dinh, G. Humbert, L. Wei, Ultra-sensitive chemical and biological analysis via specialty fibers with built-in micro structured optofluidic channels. Lab. Chip 18(4), 655–661 (2018). https://doi.org/10.1039/C7LC01247K

    Article  Google Scholar 

  22. T. Huang, Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12(3), 583–588 (2017). https://doi.org/10.1007/s11468-016-0301-7

    Article  Google Scholar 

  23. J. Boehm, A. François, H. Ebendorff-Heidepriem, T.M. Monro, Chemical deposition of silver for the fabrication of surface plasmon micro structured optical fibre sensors. Plasmonics 6(1), 133–136 (2011). https://doi.org/10.1007/s11468-010-9178-z

    Article  Google Scholar 

  24. New design for all-normal near zero dispersion photonic crystal fiber with selective liquid infiltration for broadband supercontinuum generation at 1.55 μm, Hindawi Publishing Corporation Journal of Photonics, Vol. 2014, Article ID 728592, https://doi.org/10.1155/2014/728592

  25. T. Han, Y. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, W. Zhou, Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor. Opt. Express 21(1), (2013) https://doi.org/10.1364/OE.21.000122

  26. W. Sellmeier, To explain the abnormal color sequence in the spectrum of some substances. Ann. Der. Phys. 219, 272–282 (1870)

    Article  ADS  Google Scholar 

  27. F. Hao, P. Nordlander, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett. 446, 115–118 (2007)

    Article  ADS  Google Scholar 

  28. S. Singh, Y.K. Prajapati, Highly sensitive refractive index sensor based on D-shaped PCF with gold-graphene layers on the polished surface. Appl. Phys. A 125, 437 (2019). https://doi.org/10.1007/s00339-019-2731-5

    Article  ADS  Google Scholar 

  29. S. Selvendran, A. Sivanantha Raja, S. Yogalakshmi, A highly sensitive surface plasmon resonance biosensor using photonic crystal fiber filled with gold nanowire encircled by silicon lining. Optik S0030–4026(17)31370–0. https://doi.org/10.1016/j.ijleo.2017.10.157

  30. N. Chen, M. Chang, X.D. Zhang, J. Zhou, X.L. Lu, S.L. Zhuang, Highly sensitive plasmonic sensor based on a dual-side polished photonic crystal fiber for component content sensing applications. Nanomaterials 9, 1587 (2019). https://doi.org/10.3390/nano9111587

    Article  Google Scholar 

  31. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, P.K. Chu, Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 26, 9039–9049 (2018). https://doi.org/10.1364/OE.26.009039

    Article  ADS  Google Scholar 

  32. G. An, S. Li, T. Cheng, X. Yan, X. Zhang, X. Zhou, Z. Yuan, Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform. Plasmonics (2018). https://doi.org/10.1007/s11468-018-0788-1

  33. X. Xi, Xu. Jihua, S. Li, J. Song, W. Yang, Y. Sun, S. Jiang, Y. Han, X. Fan, An Au nanofilm-graphene/D-type fiber surface plasmon resonance sensor for highly sensitive specificity bioanalysis. Sensors 20, 991 (2020). https://doi.org/10.3390/s20040991

    Article  ADS  Google Scholar 

  34. J. Sun, S. Jiang, Xu. Jihua, Z. Li, Yu. Chonghui Li, X.Z. Jing, J. Pan, C. Zhang, B. Man, Sensitive and selective SPR sensor employing gold-supported graphene composite film/D shaped fiber for dopamine detection. J. Phys. D: Appl. Phys (2019). https://doi.org/10.1088/1361-6463/ab08c1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Divya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, J., Selvendran, S., Raja, A.S. et al. Graphene-Au-Coated Plasmonic Sensor Based on D-Shaped Bezier Polygonal Hollow Core Photonic Crystal Fiber. Braz J Phys 51, 1314–1323 (2021). https://doi.org/10.1007/s13538-021-00969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00969-6

Keywords

Navigation