Skip to main content
Log in

High-Performance Tunable Plasmonic Absorber Based on the Metal-Insulator-Metal Grating Nanostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A new high-performance plasmonic absorber based on the metal-insulator-metal grating nanostructure is proposed and numerically studied. The effect of geometric parameters of grating stripe and insulator layer on light absorption is investigated. Four main absorption bands with efficiencies nearly 100 % are obtained by modulating duty cycle of the metal grating, which show redshift with the increased stripe width. The physical mechanism responsible for the absorption is discussed based on distributions of the magnetic field and the Poynting vector and is found to be different for the four bands. It is also found that perfect absorption of the nanostructure can be achieved when the insulator layer thickness ranges from 20 to 70 nm; meanwhile, the resonant wavelength corresponding to perfect absorption can be tuned and it shifts towards red side with the increase of the grating thickness when the air slit is narrow. The proposed highly efficient light absorber exhibits a very simple geometrical structure and is easy to be fabricated, which has potential applications in photonic device, such as photodetectors, sensors, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  3. Fan P, Colombo C, Huang KC, Krogstrup P, Nygård J, Fontcuberta IMA, Brongersma ML (2012) An electrically-driven GaAs nanowire surface plasmon source. Nano Lett 12(9):4943–7

    Article  CAS  Google Scholar 

  4. Jun Z, Liuli Q, Shuxiang S, Junwen Z, Siyuan L (2015) Design of a surface plasmon resonance sensor based on grating connection. Photonic Sensors 5(2):159–165

    Article  Google Scholar 

  5. Jules LH, Nikhil B, Sarah DR, Pedro E (2014) Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors 4:172–188

    Article  Google Scholar 

  6. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  7. Chao N, Tiffany H, Xin Z, Haitao L, Weihua Z, Jonathan H (2015) Impact of a dielectric layer on the resonant conditions of nanograting structures. Plasmonics 10(2):419–427

    Article  Google Scholar 

  8. Hans L (2013) Reflective colored image based on metal-dielectric-metal-coated gratings. Opt Lett 38(9):1398–1400

    Article  Google Scholar 

  9. Li XF, Yu SF (2010) Extremely high sensitive plasmonic refractive index sensors based on metallic grating. Plasmonics 5(4):389–394

    Article  Google Scholar 

  10. Wenchao Z, Yihui W, Muxin Y, Peng H, Guigen L, Kaiwei L (2013) Extraordinary optical absorption based on guided-mode resonance. Opt Lett 38(24):5393–5396

    Article  Google Scholar 

  11. Jiaming H, Jing W, Xianliang L, Willie JP, Lei Z, Min Q (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104

    Article  Google Scholar 

  12. Chihhui W, Gennaady S (2012) Design of metamaterial surfaces with broadband absorber. Opt Lett 37(3):308–310

    Article  Google Scholar 

  13. Roszkiewicz A, Nasalski W (2012) Reflection suppression and absorption enhancement of optical field at thin metal gratings with narrow slits. Opt Lett 37(18):3759–3761

    Article  CAS  Google Scholar 

  14. Shuowei D, Ding Z, Qiang L, Min Q (2013) Double-sided polarization-independent plasmonic absorber at near-infrared region. Opt Express 21(11):13125–13133

    Article  Google Scholar 

  15. Yulian L, Bowen A, Shengming J, Jun G, Yuanlin C, Shengda P (2015) Plasmonic induced triple-band absorber for sensor application. Opt Express 23(13):17607–17612

    Article  Google Scholar 

  16. Tianran L, Yang S, Wonseok S, Qiangzhong Z, Shanhui F, Chongjun J (2014) Dislocated double-layer metal gratings: an efficient unidirectional coupler. Nano Lett 14(7):3848–3854

    Article  Google Scholar 

  17. Xuefeng Y, Shuxia Z, Daohua Z, Yueke W, Jian W (2013) Subwavelength interference lithography based on a unidirectional surface plasmon coupler. Opt Eng 52(8):086109

    Article  Google Scholar 

  18. Nghia NH, Yu-Lung L, Yu-Bin C, Tsai-Yu Y (2011) Realization of integrated polarizer and color filters based on sub-wavelength metallic gratings using a hybrid numerical scheme. Appl Opt 50(4):415–426

    Article  Google Scholar 

  19. Vincenti MA, Grande M, De Ceglia D, Stomeo T, Petruzzelli V, De Vittorio M, Scalora M, D’ Orazio A (2012) Color control through plasmonic metal gratings. Appl Phys Lett 100(20):201107

    Article  Google Scholar 

  20. Xianliang L, Talmage T, Tatiana S, Starr AF, Marie JN, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107(4):045901

    Article  Google Scholar 

  21. Xianliang L, Tatiana S, Starr AF, Padilla WJ (2010) Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett 104(20):207403

    Article  Google Scholar 

  22. Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce JM, Güney DÖ (2014) Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci Rep 4:4901

    Article  CAS  Google Scholar 

  23. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:193–198

    Article  Google Scholar 

  24. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  25. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  Google Scholar 

  26. Liang Y, Peng W (2013) Theoretical study of transmission characteristics of subwavelength nano-structured metallic grating. Appl Spectrosc 67(1):49–53

    Article  CAS  Google Scholar 

  27. Fabrice P, Patrick B, Riad H, Jean-Luc P (2011) Light funneling mechanism explained by magnetoelectric interference. Phys Rev Lett 107(9):093902

    Article  Google Scholar 

  28. Peng Z, Jay Guo L (2012) High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl Phys Lett 101(24):241116

    Article  Google Scholar 

  29. Stefan AM (2007) Plasmonics: fundamentals and applications. Springer

  30. Zhengqi L, Guiqiang L, Guolan F, Xiaoshan L, Yan W (2016) Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Opt Express 24(5):5020–5025

    Article  Google Scholar 

  31. Yi-Kuei Ryan W, Hollowell AE, Cheng Z, Jay Guo L (2013) Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci Rep 3:1194

    Google Scholar 

Download references

Acknowledgments

This project was supported by 973 program (2013CB922404); the National Natural Science Foundation of China under Grant Nos. 11474039, 11474040; and also project 14KP007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingquan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Ji, B. & Lin, J. High-Performance Tunable Plasmonic Absorber Based on the Metal-Insulator-Metal Grating Nanostructure. Plasmonics 12, 151–156 (2017). https://doi.org/10.1007/s11468-016-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0242-1

Keywords

Navigation