Skip to main content
Log in

Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A tapered optical fiber fabricated by a simple chemical etching method and modified with Ag nanoparticles (AgNPs) by chemical deposition was evaluated for surface-enhanced Raman scattering (SERS). The fiber probe was used for SERS measurements in both direct and remote scattering modes, yielding desired performance in both scattering configurations. The state of the obtained AgNPs made a significant contribution to the high sensitivity of SERS to Rhodamine 6G (R6G) molecules (down to a concentration of 10−7 M), and the substrate had an analyst enhancement factor (AEF) on the order of ∼108. Meanwhile, the SERS intensity during the evaporation process was investigated, showing a good stability at the later stage of the evaporation process. The fiber SERS probes demonstrated good reproducibility with the average relative standard deviation (RSD) values being less than 0.2 for the major Raman peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andrade GFS, Hayashi JG, Rahman MM, Salcedo WJ, Cordeiro CMB, Brolo AG (2013) Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips. Plasmonics 8(2):113–1121

    Article  Google Scholar 

  2. Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78:3859–3873

    Article  CAS  Google Scholar 

  3. Liu T, Zhou L, Zhang Z, Xiao X, Zhou M, Yang C (2014) Combined taper-and-cylinder optical fiber probes for highly sensitive surface-enhanced Raman scattering. Appl Phys B 116(4):799–803

    Article  CAS  Google Scholar 

  4. Kostovski G, Stoddart PR, Mitchell A (2014) The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies. Adv Mater 26:3798–3820

    Article  CAS  Google Scholar 

  5. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  6. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry part i. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  7. Zhang J, Zhang X, Lai C, Zhou H, Zhu Y (2014) Silver-decorated aligned CNT arrays as SERS substrates by high temperature annealing. Opt Express 22(18):21157–21166

    Article  Google Scholar 

  8. Zhang J, Fan T, Zhang X, Lai C, Zhu Y (2014) Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate. Appl Opt 53(6):1159–1165

    Article  CAS  Google Scholar 

  9. Gong T, Zhu Y, Zhang J, Ren W, Quan J, Wang N (2015) Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene. Carbon 87:385–394

    Article  CAS  Google Scholar 

  10. Stoddart PR, White DJ (2009) Optical fiber SERS sensor. Anal Bioanal Chem 394:1761–1774

    Article  CAS  Google Scholar 

  11. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B 54:3–15

    Article  CAS  Google Scholar 

  12. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7:1118–1129

    Article  Google Scholar 

  13. Guieu V, Lagugne-labarthet F, Talaga D, Servant L, Sojic N (2008) Ultrasharp optical-fiber nanoprobe array for Raman direct-enhancement imaging. Small 4(1):96–99

    Article  CAS  Google Scholar 

  14. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanah KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4(10):2015–2018

    Article  CAS  Google Scholar 

  15. Zheng XL, Guo DW, Shao YL, Jia SJ, Xu SP, Zhao B, Xu WQ, Corredor C, Lombardi JR (2008) Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir 24(8):4394–4398

    Article  CAS  Google Scholar 

  16. Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR (2009) Nanoimprinted optical fibers: biotemplated nanostructures for SERS sensing. Biosens Bioelectron 24:1531–1535

    Article  CAS  Google Scholar 

  17. Smythe EJ, Dickey MD, Bao JM, Whitesides GM, Capasso F (2009) Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 9(3):1132–1138

    Article  CAS  Google Scholar 

  18. Andrade GFS, Fan MK, Brolo AG (2010) Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens Bioelectron 25(10):2270–2275

    Article  CAS  Google Scholar 

  19. Lim JW, Kang IJ (2014) Fabrication of chitosan-gold nanocomposites combined with optical fiber as SERS substrates to detect dopamine molecules. Bull Kor Chem Soc 35(1):25–29

    Article  CAS  Google Scholar 

  20. Li L, Liu S, Chen Z, Dai Z, Chen N, Pang F, Shang Y, Lu B, Wang T (2014) Remote detection of the surface-enhanced Raman spectrum with the optical fiber nanoprobe. Opt Spectrosc 116(4):575–578

    Article  CAS  Google Scholar 

  21. Cao J, Wang J (2015) Development of Ag nanopolyhedra based fiber-optic probes for high performance SERS detection. New J Chem 39:2421–2424

    Article  CAS  Google Scholar 

  22. Viets C, Hill W (2001) Fiber-optic SERS sensors with conically etched tips. J Mol Struct 563–564:163–166

    Article  Google Scholar 

  23. Jayawardhana S, Kostovski G, Mazzolini AP, Stoddart PR (2011) Optical fiber sensor based on oblique angle deposition. Appl Opt 50(2):155–162

    Article  CAS  Google Scholar 

  24. Foti A, D’Andrea C, Bonaccorso F, Lanza M, Calogero G, Messina E, Marago OM, Fazio B, Gucciardi PG (2013) A shape-engineered surface-enhanced Raman scattering optical fiber sensor working from the visible to the near-infrared. Plasmonics 8(1):13–23

    Article  CAS  Google Scholar 

  25. Puygranier BAF, Dawson P (2000) Chemical etching of optical fibre tips—experiment and model. Ultramicroscopy 85(4):235–248

    Article  CAS  Google Scholar 

  26. Puygranier BAF, Montgomery S, Ashe J, Turner RJ, Dawson P (2001) Imaging tip formation in single-mode optical fibres. Ultramicroscopy 86(1–2):233–239

    Article  CAS  Google Scholar 

  27. Clanet C, Quere D (2002) Onset of menisci. J Fluid Mech 460:131–149

    Article  CAS  Google Scholar 

  28. Schaffer E, Wong PZ (1998) Dynamics of contact line pinning in capillary rise and fall. Phys Rev Lett 80(14):3069–3072

    Article  CAS  Google Scholar 

  29. Tang H, Meng G, Huang Q, Zhang Z, Huang Z, Zhu C (2012) Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace. Polychlorinated biphenyls. Adv Funct Mater 22(10):218–224

    Article  Google Scholar 

  30. Ru ECL, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

    Article  Google Scholar 

  31. Ahn H, Thiyagarajan P, Jia L, Kim S, Yoon J, Thomas EL, Jang J (2013) An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography. Nanoscale 5(5):1836–1842

    Article  CAS  Google Scholar 

  32. Lin X, Cui Y, Xu Y, Ren B, Tian T (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394:1729–1745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Xueqiang Qi from the College of Chemistry and Chemical Engineering in Chongqing University for SEM and Raman spectrometer help. This research is funded by National Natural Science Foundation of China (No. 61376121), National High Technology Research and Development Program of China (863 Program, No. 2015AA034801), and the Fundamental research Funds for the central Universities (106112013CDJZR 125502, 20003, 20008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, S., Gong, T. et al. Tapered Fiber Probe Modified by Ag Nanoparticles for SERS Detection. Plasmonics 11, 743–751 (2016). https://doi.org/10.1007/s11468-015-0105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0105-1

Keywords

Navigation