Skip to main content
Log in

A Shape-Engineered Surface-Enhanced Raman Scattering Optical Fiber Sensor Working from the Visible to the Near-Infrared

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) takes advantage of the giant electromagnetic field enhancement provided by localized surface plasmons in metal nanoparticles to amplify the weak Raman scattering of the molecules. Optical fibers coated with noble metal nanoparticles can therefore be used as SERS-based sensors for remote detection of molecular species. In this article, we report on the development of an optical fiber SERS sensor capable to operate on a range of excitation wavelengths from the visible to the near-infrared. We introduce a quasistatic chemical etching protocol to engineer the tip shape and investigate the effects of the tip shape on the sensor performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  2. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  3. Kall M, Xu HX, Johansson P (2005) Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy. J Raman Spectrosc 36(6–7):510–514

    Article  Google Scholar 

  4. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

    Article  Google Scholar 

  5. Meier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  6. Bello JM, Narayanan VA, Stokes DL, Vo-Dinh T (1990) Fiber-optic remote sensor for in situ surface-enhanced Raman scattering analysis. Anal Chem 62(22):2437–2441

    Article  CAS  Google Scholar 

  7. Mehrvar M, Bis C, Scharer JM, Moo-Young M, Luong JH (2000) Fiber-optic biosensors—trends and advances. Anal Sci 16(7):677–692

    Article  CAS  Google Scholar 

  8. Stokes DL, Vo-Dinh T (2000) Development of an integrated single-fiber SERS sensor. Sensors Actuators B-Chem 69(1–2):28–36

    Article  Google Scholar 

  9. Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78(12):3859–3874

    Article  CAS  Google Scholar 

  10. Yan F, Vo-Dinh T (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sensors Actuators B-Chem 121(1):61–66

    Article  Google Scholar 

  11. Yang X, Gu C, Qian F, Li Y, Zhang JZ (2011) Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal Chem 83(15):5888–5894

    Article  CAS  Google Scholar 

  12. Vo-Dinh T, Cullum BM, Stokes DL (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sensors Actuators B-Chem 74(1–3):2–11

    Article  Google Scholar 

  13. Lucotti A, Zerbi G (2007) Fiber-optic SERS sensor with optimized geometry. Sensors Actuators B-Chem 121(2):356–364

    Article  Google Scholar 

  14. Lucotti A, Pesapane A, Zerbi G (2007) Use of a geometry optimized fiber-optic surface-enhanced Raman scattering sensor in trace detection. Appl Spectrosc 61(3):260–268

    Article  CAS  Google Scholar 

  15. Pesapane A, Lucotti A, Zerbi G (2010) Fiber-optic SERS sensor with optimized geometry: testing and optimization. J Raman Spectrosc 41(3):256–267

    CAS  Google Scholar 

  16. Viets C, Hill W (2000) Single-fibre surface-enhanced Raman sensors with angled tips. J Raman Spectrosc 31(7):625–631

    Article  CAS  Google Scholar 

  17. Viets C, Hill W (2001) Fibre-optic SERS sensors with conically etched tips. J Mol Struct 563:163–166

    Article  Google Scholar 

  18. Ma XD, Huo HB, Wang WH, Tian Y, Wu N, Guthy C, Shen MY, Wang XW (2010) Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser. Sensors 10(12):11064–11071

    Article  CAS  Google Scholar 

  19. Polwart E, Keir RL, Davidson CM, Smith WE, Sadler DA (2000) Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Appl Spectrosc 54(4):522–527

    Article  CAS  Google Scholar 

  20. Fazio B, D’Andrea C, Bonaccorso F, Irrera A, Calogero G, Vasi C, Gucciardi PG, Allegrini M, Toma A, Chiappe D, Martella C, Buatier de Mongeot F (2011) Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires. ACS Nano 5(7):5945–5956

    Article  CAS  Google Scholar 

  21. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109(22):11279–11285

    Article  CAS  Google Scholar 

  22. Messina E, Cavallaro E, Cacciola A, Saija R, Borghese F, Denti P, Fazio B, Gucciardi PG, Iatì MA et al (2011) Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J Phys Chem C 115:5115–5122

    Article  CAS  Google Scholar 

  23. Grand J, de la Chapelle M, Bijeon JL, Adam PM, Vial A, Royer P (2005) Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72(3):033407

    Article  Google Scholar 

  24. Le Ru EC, Etchegoin PG (2007) Principles of surface enhanced Raman scattering. Elsevier, Amsterdam

    Google Scholar 

  25. Long D (2002) The Raman effect. Wiley, Chichester

    Book  Google Scholar 

  26. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  27. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Article  Google Scholar 

  28. Bonaccorso F, Hasan T, Tan PH, Sciascia C, Privitera G, Di Marco G, Gucciardi PG, Ferrari AC (2010) Density gradient ultracentrifugation of nanotubes: interplay of bundling and surfactants encapsulation. J Phys Chem C 114(41):17267–17285

    Article  CAS  Google Scholar 

  29. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  30. http://www.sigmaaldrich.com/materials-science/nanomaterials/silver-nanoparticles.html

  31. Lu L, Xu X-L, Shi C-S, Ming H (2010) Localized surface plasmon resonance enhanced photoluminescence of CdSe QDs in PMMA matrix on silver colloids with different shapes. Thin Solid Films 518(12):3250–3254

    Article  CAS  Google Scholar 

  32. Huang T, Xu X-HN (2010) Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem 20(44):9867

    Article  CAS  Google Scholar 

  33. Gresillon S, Aigouy L, Boccara AC, Rivoal JC, Quelin X, Desmarest C, Gadenne P, Shubin VA, Sarychev AK, Shalaev VM (1999) Experimental observation of localized optical excitations in random metal-dielectric films. Phys Rev Lett 82(22):4520–4523

    Article  CAS  Google Scholar 

  34. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826

    Article  CAS  Google Scholar 

  35. Lu Y, Liu GL, Lee LP (2004) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5(1):5–9

    Article  Google Scholar 

  36. Bonaccorso F, Calogero G, Di Marco G, Maragò OM, Gucciardi PG, Giorgianni U, Channon K, Sabatino G (2007) Fabrication of gold tips by chemical etching in aqua regia. Rev Sci Instrum 78(10):103702

    Article  CAS  Google Scholar 

  37. Patanè S, Cefalì E, Arena A, Gucciardi PG, Allegrini M (2006) Wide angle near-field optical probes by reverse tube etching. Ultramicroscopy 106(6):475–479

    Article  Google Scholar 

  38. Labardi M, Gucciardi PG, Allegrini M (2000) Near-field optical microscopy. La Rivista del Nuovo Cimento 23:1–35

    Google Scholar 

  39. Labardi M, Gucciardi PG, Allegrini M, Pelosi C (1998) Assessment of NSOM resolution on III–V semiconductor thin films. Appl Phys A: Mater Sci Process 66(7):S397–S402

    Article  CAS  Google Scholar 

  40. Patanè S, Gucciardi PG, Labardi M, Allegrini M (2004) Apertureless near-field optical microscopy. La Rivista del Nuovo Cimento 27:1–46

    Google Scholar 

  41. Gucciardi P, Bonaccorso F, Lopes M, Billot L, Lamy De La Chapelle M (2008) Light depolarization induced by sharp metallic tips and effects on tip-enhanced Raman spectroscopy. Thin Solid Films 516(22):8064–8072

    Article  CAS  Google Scholar 

  42. Turner DR (1984) Etch procedure for optical fibers. U.S. Patent

  43. Knotter DM (2000) Etching mechanism of vitreous silicon dioxide in HF-based solutions. J Am Chem Soc 122:4345–4351

    Article  CAS  Google Scholar 

  44. Puygranier BAF, Dawson P (2000) Chemical etching of optical fibre tips—experiment and model. Ultramicroscopy 85(4):235–248

    Article  CAS  Google Scholar 

  45. Puygranier BAF, Montgomery S, Ashe J, Turner RJ, Dawson P (2001) Imaging tip formation in single-mode optical fibres. Ultramicroscopy 86(1–2):233–239

    Article  CAS  Google Scholar 

  46. Clanet C, Quere D (2002) Onset of menisci. J Fluid Mech 460:131–149

    Article  CAS  Google Scholar 

  47. Yang LJ, Yao TJ, Tai YC (2004) The marching velocity of the capillary meniscus in a microchannel. J Micromech Microeng 14(2):220–225

    Article  Google Scholar 

  48. http://deepblue.lib.umich.edu/bitstream/2027.42/3944/4/bac0145.0001.001.txt

  49. http://www.stenutz.eu/chem/solv6.php?name=isooctane

  50. Schaffer E, Wong PZ (1998) Dynamics of contact line pinning in capillary rise and fall. Phys Rev Lett 80(14):3069–3072

    Article  CAS  Google Scholar 

  51. Fazio E, Neri F, D’Andrea C, Ossi PM, Santo N, Trusso S (2011) SERS activity of pulsed laser ablated silver thin films with controlled nanostructure. J Raman Spectrosc 42(6):1298–1304

    Article  CAS  Google Scholar 

  52. http://omlc.ogi.edu/spectra/PhotochemCAD/html/rhodamine6G.html

  53. Stolen RH, Lee C, Jain RK (1984) Development of the stimulated Raman spectrum in single-mode silica fibers. J Opt Soc Am B 1:652–657

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from MIUR (PRIN 2008J858Y7), European Union Seventh Framework Programme (FP7-HEALTH-F5-2009-241818-NANOANTENNA, Grant Agreement No. 241818), Programma Operativo Nazionale Ricerca e Competitività 2007–2013, PON01_01322 PANREX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Giuseppe Gucciardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foti, A., D’Andrea, C., Bonaccorso, F. et al. A Shape-Engineered Surface-Enhanced Raman Scattering Optical Fiber Sensor Working from the Visible to the Near-Infrared. Plasmonics 8, 13–23 (2013). https://doi.org/10.1007/s11468-012-9371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9371-3

Keywords

Navigation