Skip to main content
Log in

Ultra-Thin Organic Solar Cells Incorporating Dielectric-Coated Comb Silver Nanogratings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Although coating engineering on metallic nanostructures has been frequently applied in organic solar cells (OSCs) for improving the device performance by preventing the possible exciton quenching and charge recombination at the metal surface, there have been few theoretical researches addressing how the dielectric-coating of metal nanostructures influences the optical performance of OSCs. Here, we theoretically investigate the effect of coating a comb silver nanograting by a dielectric film on the absorption performance of OSCs. It is found that, under transverse-magnetic (TM) polarization, when the refractive index or thickness of the dielectric-coating is tuned, different orders of plasmonic waveguide modes are excited by the P3HT:PC61BM/coating/Ag triple-layered system. The dispersion relationship of such a plamsonic waveguide mode is solved and analyzed for clarifying the physical mechanism of the induced light trapping effect. It shows that for optimizing the light absorption in active layer under TM polarization, it is more favorable to coat a thin dielectric film (of 1 nm thick) with a suitable refractive index. While under transverse-electric (TE) polarization, the higher refractive index of dielectric-coating, the better the effect of light trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 3:205–213

    Article  Google Scholar 

  2. Gan Q, Bartoli FJ, Kafafi ZH (2013) Plasmonic-enhanced organic photovoltaics: breaking the 10 % efficiency barrier. Adv Mater 17:2385–2396

    Article  Google Scholar 

  3. Wu J-L, Chen F-C, Hsiao Y-S, Chien F-C, Chen P, Kuo C-H, Huang MH, Hsu C-S (2011) Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2:959–967

    Article  Google Scholar 

  4. Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem 24:5633–5637

    Article  Google Scholar 

  5. Yoon W-J, Jung K-Y, Liu J, Duraisamy T, Revur R, Teixeira FL, Sengupta S, Berger PR (2010) Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energy Mater Sol Cells 2:128–132

    Article  Google Scholar 

  6. Lu L, Luo Z, Xu T, Yu L (2013) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 1:59–64

    Article  Google Scholar 

  7. Yao K, Salvador M, Chueh C, Xin X, Xu Y, deQuilettes DW, Hu T, Chen Y, Ginger S, Jen AK (2014) A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv Energy Mater 9:1400206

    Google Scholar 

  8. Lu Z, Chen X, Zhou J, Jiang Z, Huang S, Zhu F, Piao X, Sun Z (2015) Performance enhancement in inverted polymer solar cells incorporating ultrathin Au and LiF modified ZnO electron transporting interlayer. Org Electron 17:364–370

  9. Yousefi M, Alighanbari A (2015) Random plasmonic nanowire gratings for enhanced light absorption in organic solar cells. Plasmonics 1–9. doi:10.1007/s11468-015-9948-8

  10. Sefunc MA, Okyay AK, Demir HV (2011) Plasmonic backcontact grating for P3HT: PCBM organic solar cells enabling strong optical absorption increased in all polarizations. Opt Express 15:14200–14209

    Article  Google Scholar 

  11. Williamson A, McClean É, Leipold D, Zerulla D, Runge E (2011) The design of efficient surface-plasmon-enhanced ultra-thin polymer-based solar cells. Appl Phys Lett 9:093307

    Article  Google Scholar 

  12. Wu B, Liu X, Oo TZ, Xing G, Mathews N, Sum TC (2012) Resonant aluminum nanodisk array for enhanced tunable broadband light trapping in ultrathin bulk heterojunction organic photovoltaic devices. Plasmonics 4:677–684

    Article  Google Scholar 

  13. Foster S, John S (2014) Light trapping design for low band-gap polymer solar cells. Opt Express 102:A465–A480

    Article  Google Scholar 

  14. Zeng B, Gan Q, Kafafi ZH, Bartoli FJ (2013) Polymeric photovoltaics with various metallic plasmonic nanostructures. J Appl Phys 6:063109

    Article  Google Scholar 

  15. Tian X, Wang W, Hao Y, Lin Y, Cui Y, Zhang Y, Wang H, Wei B, Xu B (2014) Omnidirectional and polarization-insensitive light absorption enhancement in an organic photovoltaic device using a one-dimensional nanograting. J Mod Opt 21:1714–1722

    Article  Google Scholar 

  16. Zhang Y, Cui Y., Wang W, Fung KH, Ji T, Hao Y, Zhu F (2014) “Absorption Enhancement in Organic Solar Cells with a Built-In Short-Pitch Plasmonic Grating,” Plasmonics 1-9. DOI 10.1007/s11468-014-9864-3.

  17. Li XH, Sha WEI, Choy WCH, Fung DDS, Xie FX (2012) Efficient inverted polymer solar cells with directly patterned active layer and silver back grating. J Phys Chem C 12:7200–7206

    Article  Google Scholar 

  18. Lee S, In S, Mason DR, Park N (2013) Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells. Opt Express 4:4055–4060

    Article  Google Scholar 

  19. Ye Z, Chaudhary S, Kuang P, Ho K-M (2012) Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes. Opt Express 11:12213–12221

    Article  Google Scholar 

  20. Salvador M, MacLeod BA, Hess A, Kulkarni AP, Munechika K, Chen JIL, Ginger DS (2012) Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells. ACS Nano 11:10024–10032

    Article  Google Scholar 

  21. Hao Y, Song J, Yang F, Hao Y, Sun Q, Guo J, Cui Y, Wang H, Zhu F (2015) Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer. J Mater Chem C 5:1082–1090

    Article  Google Scholar 

  22. Choi H, Lee J-P, Ko S-J, Jung J-W, Park H, Yoo S, Park O, Jeong J-R, Park S, Kim JY (2013) Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett 5:2204–2208

    Article  Google Scholar 

  23. Jankovic V, Yang Y, You J, Dou L, Liu Y, Cheung P, Chang JP (2013) Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano 5:3815–3822

    Article  Google Scholar 

  24. You J, Li X, Xie F-X, Sha WEI, Kwong JHW, Li G, Choy WCH, Yang Y (2012) Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv Energy Mater 10:1203–1207

    Article  Google Scholar 

  25. Wang W, Hao Y, Cui Y, Tian X, Zhang Y, Wang H, Shi F, Wei B, Huang W (2014) High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices. Opt Express 102:A376–A385

    Article  Google Scholar 

  26. Yang Y, Mielczarek K, Zakhidov A, Hu W (2014) Efficient low bandgap polymer solar cell with ordered heterojunction defined by nanoimprint lithography. ACS Appl Mater Interfaces 21:19282–19287

    Article  Google Scholar 

  27. Park HJ, Xu T, Lee JY, Ledbetter A, Guo LJ (2011) Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano 9:7055–7060

    Article  Google Scholar 

  28. Park HJ, Guo LJ (2015) “Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells,” Chin Chem Lett http://www.sciencedirect.com/science/article/pii/S1001841715000649

  29. Moharam MG, Gaylord TK (1986) Rigorous coupled-wave analysis of metallic surface-relief gratings. JOSA a 11:1780–1787

    Article  Google Scholar 

  30. Shen H, Maes B (2011) Combined plasmonic gratings in organic solar cells. Opt Express 106:A1202–A1210

    Article  Google Scholar 

  31. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, Berlin

    Google Scholar 

  32. Seo HO, Park S-Y, Shim WH, Kim K-D, Lee KH, Jo MY, Kim JH, Lee E, Kim D-W, Kim YD (2011) Ultrathin TiO2 films on ZnO electron-collecting layers of inverted organic solar cell. J Phys Chem C 43:21517–21520

    Article  Google Scholar 

  33. Zhu F, Chen X, Lu Z, Yang J, Huang S, Sun Z (2014) Efficiency enhancement of inverted polymer solar cells using ionic liquid-functionalized carbon nanoparticles-modified ZnO as electron selective layer. Nano-Micro Lett 6:24–29

  34. Palik ED (1998) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  35. Liu YC, Hsieh JH, Tung SK (2006) Extraction of optical constants of zinc oxide thin films by ellipsometry with various models. Thin Solid Films 1:32–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the National Natural Scientific Foundation of China (61274056, 11204205, 61475109, 11204202, 61308093), Key Laboratory Foundation of Advanced Display and System Applications of Ministry of Education in Shanghai University, International Science & Technology Cooperation Program of China (2012DFR50460), Outstanding Young Scholars of Shanxi Province, the New Teachers’ Fund for Doctor Stations (20121402120017, 20131402120020), Hong Kong Scholar Plan (XJ2013002), Doctoral Program of Higher Education Research Fund (20121402120017), and the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuying Hao or Yanxia Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Hao, Y., Cui, Y. et al. Ultra-Thin Organic Solar Cells Incorporating Dielectric-Coated Comb Silver Nanogratings. Plasmonics 11, 151–157 (2016). https://doi.org/10.1007/s11468-015-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0020-5

Keywords

Navigation