Skip to main content
Log in

Localization, Hybridization, and Coupling of Plasmon Resonances in an Aluminum Nanomatryushka

  • Published:
Plasmonics Aims and scope Submit manuscript

An Erratum to this article was published on 25 February 2015

Abstract

In this study, we investigate the plasmon response of two concentric aluminum (Al) nanoshells as a nanomatryushka unit to introduce a novel compositional structure that has a strong potential to employ in designing practical nanoscale plasmonic devices. Herein, we employed Al nanoshells with a coverage of oxide (Al2O3) layer with certain and homogenous size of thickness in inner and outer sides. Using plasmon hybridization theory and finite-difference time-domain (FDTD) method as numerical model, we calculated and sketched the optical response and energy level diagram for the studied structure. Strong plasmon resonances are reported in the UV and visible wavelengths that can be supported efficiently by using the proposed nanomatryushka unit composed of Al/Al2O3 on a SiO2 surface. Utilizing presented nanomatryushka in designing an artificial dimer configuration, the possibility of appearing of dark modes and formation of Fano resonances in such a symmetric structure in the UV and visible spectra are verified numerically. Immersing the presented dimer in various liquids with different refractive indices, the behavior of Fano dip is investigated and corresponding figure of merit (FoM) is quantified based on the plasmon resonance energy shifts over the refractive index variations. This understating opens novel avenues to obtain sharp and deep Fano resonances in simple and low-cost structures that have strong potentials in fabrication of biochemical sensors, superlensing, and biological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Knight MW, King NS, Liu L, Everit HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  CAS  Google Scholar 

  2. Ahmadivand A, Golmohammadi S (2015) Surface plasmon resonances and plasmon hybridization in compositional Al/Al2O3/SiO2 nanorings at the UV spectrum to the near infrared region (NIR). Opt Laser Technol 66:9–14

    Article  CAS  Google Scholar 

  3. Knight MW, Liu L, Wang Y, Brown L, Mukherjee S, King NS, Everitt HO, Nordlander P, Halas NJ (2012) Aluminum plasmonic nanoantennas. Nano Lett 12:6000–6004

    Article  CAS  Google Scholar 

  4. Kochergin V, Neely L, C-Y J, Robinson HD (2011) Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices. Appl Phys Lett 98:133305

    Article  Google Scholar 

  5. Jha R, Sharma AK (2009) High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Opt Lett 34:749–751

    Article  CAS  Google Scholar 

  6. Golmohammadi S, Ahmadivand A (2014) Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: a route to design efficient and precise biochemical sensors. Plasmonics 9:1447–1456

    Article  CAS  Google Scholar 

  7. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W, in the infrared and far infrared. Appl Opt 22:1099–1119

    Article  CAS  Google Scholar 

  8. Ahmadivand A, Golmohammadi S (2014) Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optical plasmonic Y-splitter waveguides. Opt Commun 310:1–14

    Article  CAS  Google Scholar 

  9. Wang H, Brandl DW, Nordlander P, Halas NJ (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40:53–62

    Article  Google Scholar 

  10. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  11. Levin CS, Hofmann C, Ali TA, Kelly AT, Morosan E, Nordlander P, Whitmire KH, Halas NJ (2009) Magnetic-plasmonic core-shell nanoparticles. ACS Nano 3:1379–1388

    Article  CAS  Google Scholar 

  12. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Z-Y L, Ginger D, Xia Y (2007) Synthetic and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036

    Article  CAS  Google Scholar 

  13. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  14. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  15. Urban AS, Shen X, Wang Y, Large N, Wang H, Knight MW, Nordlander P, Chen H, Halas NJ (2013) Three-dimensional plasmonic nanoclusters. Nano Lett 13:4399–4403

    Article  CAS  Google Scholar 

  16. Polavarapu L, Perez-Juste J, Xu Q-H, Liz-Marzan LM (2014) Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J Mater Chem C 2:7460–7476

    Article  CAS  Google Scholar 

  17. Sheikholeslami S, Jun Y-W, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660

    Article  CAS  Google Scholar 

  18. Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Nano Lett 8:1212–1218

    Article  CAS  Google Scholar 

  19. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257

    Article  CAS  Google Scholar 

  20. Wei X, Altissimo M, Davis TJ, Mulvaney P (2014) Fano resonances in three-dimensional dual-wire pairs. Nanoscale 6:5372–5377

    Article  CAS  Google Scholar 

  21. Khan AD, Khan SD, Khan RU, Ahmed N, Ali A, Khalil A, Khan FA (2014) Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 9:1091–1102

    Article  CAS  Google Scholar 

  22. Palik ED (1998) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  23. Kashiwa T, Kudo H, Sendo Y, Ohtani T, Kanai Y (2002) The phase velocity error and stability condition of the three-dimensional nonstandard FDTD method. IEEE Trans Magn 38:661–664

    Article  Google Scholar 

  24. Maidecchi G, Gonella G, Zaccaria RP, Moroni R, Anghinolfi L, Giglia A, Nannarone S, Mattera L, Dai H-L, Canepa M, Bisio F (2013) Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays. ACS Nano 7:5834–5841

    Article  CAS  Google Scholar 

  25. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  26. Choy TC (1999) Effective medium theory: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  27. Argall F, Jonscher AK (1968) Dielectric properties of thin films of aluminum oxide and silicon oxide. Thin Solid Films 2:185–210

    Article  CAS  Google Scholar 

  28. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley & Sons, Berlin

    Google Scholar 

  29. Ehrenreich H, Philipp HR, Segall B (1963) Optical properties of aluminum. Phys Rev 132:1918

    Article  CAS  Google Scholar 

  30. Arakawa ET, Williams MW (1968) Optical properties of aluminum oxide in the vacuum ultraviolet. J Phys Chem Solids 29:735–744

    Article  CAS  Google Scholar 

  31. French RH, Müllejans H, Jones D (1998) Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron-loss spectroscopies. J Am Ceram Soc 81:2549–2557

    Article  CAS  Google Scholar 

  32. Ahmadivand A, Golmohammadi S (2014) Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides. Opt Commun 310:1–11

    Article  CAS  Google Scholar 

  33. Moutzouris K, Papamichael M, Betsis SC, Stavrakas I, Hloupis G, Triantis D (2013) Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl Phys B 116:617–622

    Article  Google Scholar 

  34. Rheims J, Köser J, Wriedt T (1997) Refractive-index measurements in the near-IR using an Abbe refractometer. Meas Sci Technol 8:601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSF CAREER program with the Award number: 0955013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ahmadivand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadivand, A., Pala, N. Localization, Hybridization, and Coupling of Plasmon Resonances in an Aluminum Nanomatryushka. Plasmonics 10, 809–817 (2015). https://doi.org/10.1007/s11468-014-9868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9868-z

Keywords

Navigation