Skip to main content
Log in

Fano Resonances in Compositional Clusters of Aluminum Nanodisks at the UV Spectrum: a Route to Design Efficient and Precise Biochemical Sensors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we have investigated the plasmon resonance coupling between proximal compositional Al nanoparticles that are organized in a closely spaced molecular orientation as nanoclusters. Plasmon hybridization model is employed as a theoretical model to study the spectral response of the proposed nanostructures. The optical properties of trimer, heptamer, and octamer clusters based on Al/Al2O3 nanodisks are evaluated using finite-difference time-domain (FDTD) model numerically. We have proved that a constructive and weak interference between subradiant dark and superradiant bright modes as the plasmon resonance modes causes the appearance of strong Fano resonances at the spectral response of the heptamer and octamer clusters at the UV spectrum. The effects and results of the structural and chemical modifications in the proposed nanoclusters have been discussed and determined. Finally, illuminating an octamer cluster composed of Al/Al2O3 nanoparticles and simultaneous modifications in the refractive index of the dielectric environment lead to dramatic changes in the position and quality of the Fano dip. Plotting a linear figure of merit (FoM) for the proposed octamer and quantifying this parameter for the structure as 7.72, we have verified that the structure has a strong potential to be used in designing precise localized surface plasmon resonance (LSPR) sensors that are able to sense minor environmental perturbations with high accuracy. Proposed clusters composed of Al/Al2O3 provide an opportunity to design and fabricate low-cost, high responsivity, tunable, and CMOS-compatible devices and efficient biochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  3. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  4. Saleh BEA, Tiech MC (1991) Fundamentals of photonics. Wiley, New York

    Book  Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  6. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  7. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  8. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  9. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  CAS  Google Scholar 

  10. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  11. Hsiao VKS, Zheng YB, Krishna B, Huang TJ (2008) Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv Mater 20:3528–3532

    Article  CAS  Google Scholar 

  12. Ming T, Zhao L, Xiao M, Wang J (2010) Resonance-coupling-based plasmonic switches. Small 6:2514–2519

    Article  CAS  Google Scholar 

  13. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics: a route to nanoscale optical devices. Adv Mater 13:1501–1505

    Article  CAS  Google Scholar 

  14. Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photonics Rev 2:136–159

    Article  CAS  Google Scholar 

  15. Xi ZH, Ying G, Huang GQ (2008) A visible-near infrared tunable waveguide based on plasmonic gold nanoshell. Chin Phys B 17:2567–07

    Article  Google Scholar 

  16. Ono A, Kikawada M, Akimoto R, Inami W, Kawata Y (2013) Fluorescence enhancement with deep-ultraviolet surface plasmon excitation. Opt Express 21:17447–17453

    Article  Google Scholar 

  17. McMahon JM, Schatz GC, Gray SK (2013) Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 15:5415–5423

    Article  CAS  Google Scholar 

  18. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2014) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  CAS  Google Scholar 

  19. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–421

    Article  CAS  Google Scholar 

  20. Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  CAS  Google Scholar 

  21. Yan B, Boriskina SV, Reinhard BM (2011) Optimizing gold nanoparticles cluster configurations (n ≤ 7) for array applications. J Phys Chem C 115:4578–4583

    Article  CAS  Google Scholar 

  22. Liu S–D, Yang Z, Liu R–P, Li X–Y (2012) Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. ACS Nano 6:6260–6271

    Article  CAS  Google Scholar 

  23. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  Google Scholar 

  24. Pasquale AJ, Reinhard BM, Dal Negro L (2011) Engineering photonic-plasmonic coupling in metal nanoparticle necklaces. ACS Nano 5:6578–6585

    Article  CAS  Google Scholar 

  25. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  26. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and tunable Fano resonances. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  27. Miroshnichenko AE, Flash S, Kivsshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257

    Article  CAS  Google Scholar 

  28. Chang W–S, Lassiter JB, Swanglap P, Sobhani H, Khatua S, Nordlander P, Halas NJ, Link S (2012) A plasmonic Fano switch. Nano Lett 12:4977–4982

    Article  CAS  Google Scholar 

  29. Palik ED (1998) Handbook of optical constants. Academic, San Diego

    Google Scholar 

  30. Choy TC (1999) Effective medium theory: principles and applications. Oxford University, Oxford

    Google Scholar 

  31. Tsang L, Kong JA, Ding K–H (2000) Scattering of electromagnetic waves: theories and applications. Wiley, USA

    Book  Google Scholar 

  32. Archer DG (1993) Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data 22:1441

    Article  CAS  Google Scholar 

  33. Kim Y, Lee SM, Park CS, Lee SI (1997) Substrate dependence on the optical properties of Al2O3 films grown by atomic layer deposition. Appl Phys Lett 71:3604–3606

    Article  CAS  Google Scholar 

  34. Park BG, Crosky AG, Hellier AK (2001) Material characterization, and mechanical properties of Al2O3-Al metal matrix composites. J Mater Sci 36:2417–2426

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ahmadivand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golmohammadi, S., Ahmadivand, A. Fano Resonances in Compositional Clusters of Aluminum Nanodisks at the UV Spectrum: a Route to Design Efficient and Precise Biochemical Sensors. Plasmonics 9, 1447–1456 (2014). https://doi.org/10.1007/s11468-014-9762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9762-8

Keywords

Navigation