Skip to main content
Log in

Role of Symmetry in Coupled Localized Surface Plasmon Resonance of a Nanosphere Pair

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigated localized surface mode resonance of two nanospheres immersed in a continuum dielectric medium within the framework of quasistatic approximation. We solved the Laplace equation in the bispherical coordinates subjected to the boundary conditions on both spheres. By using the matrix formulation, new method for surface mode resonance calculation is derived in terms of a nonlinear eigenvalue problem. This allows us to discuss the effects of symmetry breaking due to the difference in particle materials and particle sizes. We calculated the surface plasmon resonance (LSPR) energy for pairs of Drude metallic spheres. The solutions show that the LSPR coupling in an asymmetric pair can be interpreted as the coupling between symmetric pairs of its constituent particles. we also analyzed the LSPR excitation sequence to identify the modes of peaks from optical measurement. We found that the ambiguous dipole antibonding sigma mode of the asymmetric Au-Ag pair in the experimental work (Sheikholeslami et al., Nano Lett 10(7):2655–2660, 2010) must be the quadrupole bonding sigma mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Chem Rev 111:3669

    Article  CAS  Google Scholar 

  2. Steinbruck A, Csaki A, Fritzsche W (2012). In: Geddes CD (ed) Reviews in Plasmonics 2010, vol 1, 1st edn. Springer, New York. chap 1, pp 1–38

  3. Ghosh SK, Pal T (2007) Chem Rev 107:4797

    Article  CAS  Google Scholar 

  4. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Adv. Colloid Interface Sci. 123–126:471

    Article  Google Scholar 

  5. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2115

    Article  CAS  Google Scholar 

  6. Mayer KM, Hafner JH (2011) Chem Rev 111:3828

    Article  CAS  Google Scholar 

  7. Lopatynskyi AM, Lopatynska QG, Guo LJ, Chegel VI (2011) IEEE Sens J 11(2)

  8. Haes AJ, Duyne RPV (2002) J Am Chem Soc 124:10596

    Article  CAS  Google Scholar 

  9. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Nat Mater 7

  10. Hutter E, Fendler JH (2004) Adv Mater 16(19)

  11. Liao H, Nehl CL, Hafner JH (2006) Nanomedicine-UK 1(2):201

    Article  CAS  Google Scholar 

  12. Giannini V, Fernandez-Dominguez AL, Heck SC, Maier SA (2011) Chem Rev 111:3888

    Article  CAS  Google Scholar 

  13. Westphalen M, Kreibig U, Rostalski J, Lukth H, Meissner D (2000) Energy Mater Sol Sol Cells 61:97

    Article  CAS  Google Scholar 

  14. Kawawaki T, Takahashi Y, Tatsuma T (2013) J Phys Chem C 117:5901

    Article  CAS  Google Scholar 

  15. Svedberg F, Li Z, Xu H, Kall M (2006) Nano Lett 6(12)

  16. Sarid D, Challener WA (2010) Modern introduction to surface plasmons : theory, mathematica modeling and applications. Cambridge University Press

  17. Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP (2007) J Liphardt, PNAS 104(8):2667

    Article  CAS  Google Scholar 

  18. Batson PE (1982) Phys Rev Lett 49:936

    Article  CAS  Google Scholar 

  19. Ruppin R (1982) Phys Rev B 26:3440

    Article  CAS  Google Scholar 

  20. Klimov VV, Guzatov DV (2007) Phys Rev B 75:024303

    Article  Google Scholar 

  21. Ng J, Tang R, Chan C (2008) Phys Rev B 77(19):195407

    Article  Google Scholar 

  22. Mills DL (2002) Phys Rev B 65(12):125419

    Article  Google Scholar 

  23. Chu P, Mills DL (2008) Phys Rev B 77(4):045416

    Article  Google Scholar 

  24. Chu P, Mills DL (2007) Phys Rev Lett 99(12):127401

    Article  Google Scholar 

  25. Xu H, Käll M (2002) Phys Rev Lett 89:246802

    Article  Google Scholar 

  26. Encina ER, Coronado EA (2010) J Phys Chem C 114(9):3918

    Article  CAS  Google Scholar 

  27. Encina ER, Coronado EA (2011) J Phys Chem C 89:15908

    Article  Google Scholar 

  28. Shegai T, Chen S, Miljkoviċ VD, Zengin G, Johansson P, Käll M (2011) Nat Commun 2(481):4190

    Google Scholar 

  29. Chu Y, Schonbrun E, Yang T, Crozier KB (2008) Appl Phys Lett 93:181108

    Article  Google Scholar 

  30. Cunningham A, Mu̇hlig S, Rockstuhl C, Bu̇rgi T (2012) J Phys Chem C 116:17746

    Article  CAS  Google Scholar 

  31. Sheikholeslami S, Jun YW, Jain PK, Alivisatos AP (2010) Nano Lett 10(7):2655–2660

    Article  CAS  Google Scholar 

  32. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Fatti ND, Valle F, Brevet PF (2008) Phys Rev Lett 101:197401

    Article  CAS  Google Scholar 

  33. Pen̋a-Rodríguez O, Pal U, Campoy-Quiles M, Rodrguez-Fernández L, Garriga M, Alonso MI (2011) J Phys Chem C 115:6410–6414

    Article  Google Scholar 

  34. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419

    Article  CAS  Google Scholar 

  35. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Nano Lett 4(5):899

    Article  CAS  Google Scholar 

  36. Nordlander P, Prodan E (2004) Nano Lett 4(11):2209

    Article  CAS  Google Scholar 

  37. Brandl DW, Oubre C, Nordlander P (2005) J Chem Phys 123(2):024701

    Article  Google Scholar 

  38. Brandl DW, Mirin NA, Nordlander P (2006) J Phys Chem B 110(25):12302

    Article  CAS  Google Scholar 

  39. Brevik I, Skurdal H (1993) Physica A 199:412

    Article  CAS  Google Scholar 

  40. Esteban R, Borisov AG, Nordlander P, Aizpurua J (2011) Nat Commun 3:825

    Article  Google Scholar 

  41. García de Abajo FJ (2008) J Phys Chem C 112(46):17983

    Article  Google Scholar 

  42. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGRAW-HILL

  43. Chaumet PC, Dufour JP (1998) J Electrost 43(2):145

  44. Góngora-t A, Ley-Koo E (1996) Revist Mexicana de Phisica 42(4):663

    Google Scholar 

  45. Moon P, Spencer DE (1952) J Franklin Inst 253:585

    Article  Google Scholar 

  46. Moon P, Spencer DE (1952) J Franklin Inst 254:227

    Article  Google Scholar 

  47. Abramoviz M, Stegun IA (1971) Handbook of mathematical functions. New Dover

  48. Lucas AA, Ronveaux A, Schmeits M, Delanaye F (1975) Phys Rev B 12:5372

  49. Mehrmann V, Voss H (2004) GAMM-Reports 27:121

    Article  Google Scholar 

  50. Betcke T, Higham NJ, Mehrmann V, Schröder C, Tisseur F (2013) ACM Trans Math Softw 39(2):7

    Article  Google Scholar 

  51. West PR, Ishii S, Naik1 GV, Emani NK, Shalaev VM, Boltasseva A (2010) Laser Photonics Rev 4:795–808

  52. Hammarling S, Munro CJ, Tisseur F (2013) ACM Trans Math Softw 39(3):18

    Article  Google Scholar 

  53. Chen F, Alemu N, Johnston RL (2011) AIP Advance 1:032134

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the 90th Year Chulalongkorn Scholarship from Graduate School, Chulalongkorn University. The authors would like to express our very great appreciation to Dr. Varagorn Hengpunya for his valuable comments on our manuscript and Dr. Sukosin Thongrattanasiri for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakchat Klinkla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinkla, R., Pinsook, U. & Boonchui, S. Role of Symmetry in Coupled Localized Surface Plasmon Resonance of a Nanosphere Pair. Plasmonics 10, 643–653 (2015). https://doi.org/10.1007/s11468-014-9850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9850-9

Keywords

Navigation