Skip to main content
Log in

Tunable Fano Resonance in Rod-Ring Plasmonic Nanocavities

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tunable Fano resonances in the gold rod-ring plasmonic nanocavities with strong coherent coupling are demonstrated by finite-difference time-domain (FDTD) method. For one rod-one ring nanocavity, symmetry breaking activates the high-order plasmon modes in the ring and causes a Fano resonance with a dip in the extinction spectrum of the cavity by the coherent coupling between the bright rod mode and dark ring mode. The addition of a non-resonant rod introduces a second dark mode, which could be successively excited by the first dark ring mode, and produces double Fano resonances. By adjusting the rod number and configuration of the nanocavity, the extinction line shape can be controlled and the near-field distribution can be dramatically modified. An intriguing phenomenon of superposition beats in the plasmon damping process is revealed, which induces an energy swap between the rod and ring. The antenna effect of the resonant rod as well as the energy transfer and distribution in the nanocavities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658. doi:10.1021/nl900034v

    Article  CAS  Google Scholar 

  2. Yun BF, Hu GH, Cong JW, Cui YP (2014) Fano resonances induced by strong interactions between dipole and multipole plasmons in t-shaped nanorod dimer. Plasmonics 9:691–698. doi:10.1007/s11468-014-9688-1

    Article  CAS  Google Scholar 

  3. Tamma VA, Cui Y, Zhou J, Park W (2013) Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers. Nanoscale 5:1592–1602. doi:10.1039/c2nr33292b

    Article  CAS  Google Scholar 

  4. Verellen N, Van Dorpe P, Huang CJ, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397. doi:10.1021/Nl102991v

    Article  CAS  Google Scholar 

  5. Yang ZJ, Zhang ZS, Zhang LH, Li QQ, Hao ZH, Wang QQ (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt Lett 36:1542–1544. doi:10.1364/OL.36.001542

    Article  Google Scholar 

  6. Yang ZJ, Zhang ZS, Zhang W, Hao ZH, Wang QQ (2010) Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers. Appl Phys Lett 96:131113. doi:10.1063/1.3378689

    Article  Google Scholar 

  7. Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137. doi:10.1021/nn3007898

    Article  CAS  Google Scholar 

  8. Zhou L, Fu XF, Yu L, Zhang X, Yu XF, Hao ZH (2009) Crystal structure and optical properties of silver nanorings. Appl Phys Lett 94:153102. doi:10.1063/1.3117504

    Article  Google Scholar 

  9. Gong HM, Zhou L, Su XR, Xiao S, Liu SD, Wang QQ (2009) Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions. Adv Funct Mater 19:298–303. doi:10.1002/adfm.200801151

    Article  CAS  Google Scholar 

  10. Liu SD, Yang YB, Chen ZH, Wang WJ, Fei HM, Zhang MJ, Wang YC (2013) Excitation of multiple Fano resonances in plasmonic clusters with D-2h point group symmetry. j phys chem c 117:14218–14228. doi:10.1021/Jp404575v

    Article  CAS  Google Scholar 

  11. Wu DJ, Jiang SM, Liu XJ (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115:23797–23801. doi:10.1021/Jp0209446p

    Article  CAS  Google Scholar 

  12. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065. doi:10.1021/nl061286u

    Article  CAS  Google Scholar 

  13. Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q (2013) Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 7:11071–11078. doi:10.1021/nn4047716

    Article  CAS  Google Scholar 

  14. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038. doi:10.1021/nl0515753

    Article  CAS  Google Scholar 

  15. Wang H, Wu Y, Lassiter B, Nehl CL, Hafner JH, Nordlander P, Halas NJ (2006) Symmetry breaking in individual plasmonic nanoparticles. Proc Natl Acad Sci U S A 103:10856–10860. doi:10.1073/pnas.0604003103

    Article  CAS  Google Scholar 

  16. Pena-Rodriguez O, Rivera A, Campoy-Quiles M, Pal U (2013) Tunable Fano resonance in symmetric multilayered gold nanoshells. Nanoscale 5:209–216. doi:10.1039/c2nr32281a

    Article  CAS  Google Scholar 

  17. Kottmann J, Martin O (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655–663. doi:10.1364/OE.8.000655

    Article  CAS  Google Scholar 

  18. Yang ZJ, Wang QQ, Lin HQ (2012) Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Pérot cavity. Nanoscale 4:5308–5311. doi:10.1039/c2nr31513k

    Article  CAS  Google Scholar 

  19. Yang ZJ, Zhang ZS, Hao ZH, Wang QQ (2012) Strong bonding magnetic plasmon hybridizations in double split-ring resonators. Opt Lett 37:3675–3677. doi:10.1364/OL.37.003675

    Article  Google Scholar 

  20. Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825. doi:10.1021/nl200585b

    Article  CAS  Google Scholar 

  21. Verellen N, Van Dorpe P, Vercruysse D, Vandenbosch GA, Moshchalkov VV (2011) Dark and bright localized surface plasmons in nanocrosses. Opt Express 19:11034–11051. doi:10.1364/OE.19.011034

    Article  CAS  Google Scholar 

  22. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401. doi:10.1103/PhysRevLett.101.047401

    Article  Google Scholar 

  23. Khan AD, Khan SD, Khan R, Ahmad N, Ali A, Khalil A, Khan FA (2014) Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics. doi:10.1007/s11468-014-9719-y

    Google Scholar 

  24. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422. doi:10.1126/science.1089171

    Article  CAS  Google Scholar 

  25. Banaee MG, Crozier KB (2011) Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 5:307–314. doi:10.1021/nn102726j

    Article  CAS  Google Scholar 

  26. Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113. doi:10.1063/1.3021072

    Article  Google Scholar 

  27. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652. doi:10.1021/nn900012r

    Article  CAS  Google Scholar 

  28. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107. doi:10.1021/nl902621d

    Article  CAS  Google Scholar 

  29. Li J, Liu T, Zheng H, Dong J, He E, Gao W, Han Q, Wang C, Wu Y (2014) Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking. Plasmonics. doi:10.1007/s11468-014-9761-9

    Google Scholar 

  30. Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99:147401

    Article  CAS  Google Scholar 

  31. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988. doi:10.1021/nl802509r

    Article  CAS  Google Scholar 

  32. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GA, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4:1664–1670. doi:10.1021/nn901580r

    Article  CAS  Google Scholar 

  33. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762. doi:10.1038/Nmat2495

    Article  CAS  Google Scholar 

  34. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715. doi:10.1038/nmat2810

    Article  Google Scholar 

  35. Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137. doi:10.1021/nn3007898

    Article  CAS  Google Scholar 

  36. Hao F, Nordlander P, Burnett MT, Maier SA (2007) Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys Rev B 76:245417. doi:10.1103/Physrevb.76.245417

    Article  Google Scholar 

  37. Niu L, Zhang JB, Fu YH, Kulkarni S, Luky Anchuk B (2011) Fano resonance in dual-disk ring plasmonic nanostructures. Opt Express 19:22974–22981. doi:10.1364/OE.19.022974

    Article  Google Scholar 

  38. Huo Y, Jia T, Zhang Y, Zhao H, Zhang S, Feng D, Sun Z (2013) Narrow and deep Fano resonances in a rod and concentric square ring-disk nanostructures. Sensors 13:11350–11361. doi:10.3390/s130911350

    Article  Google Scholar 

  39. Huo YY, Jia TQ, Zhang Y, Zhao H, Zhang SA, Feng DH, Sun ZR (2014) Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure. Appl Phys Lett 104:113104. doi:10.1063/1.4868867

    Article  Google Scholar 

  40. Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12:1660–1667. doi:10.1021/nl3000453

    Article  CAS  Google Scholar 

  41. Qian J, Li YD, Chen J, Xu JJ, Sun Q (2014) Localized hybrid plasmon modes reversion in gold-silica-gold multilayer nanoshells. J Phys Chem C 118:8581–8587. doi:10.1021/Jp5007445

    Article  CAS  Google Scholar 

  42. Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H (2011) Three-dimensional plasmon rulers. Science 332:1407–1410. doi:10.1126/science.1199958

    Article  CAS  Google Scholar 

  43. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported in part by NSFC (11174229 and 61008043), National Basic Research Program of China (2011CB922200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 565 kb)

ESM 2

(MPG 1.83 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, DJ., Yang, ZJ., Li, YY. et al. Tunable Fano Resonance in Rod-Ring Plasmonic Nanocavities. Plasmonics 10, 263–269 (2015). https://doi.org/10.1007/s11468-014-9804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9804-2

Keywords

Navigation