Skip to main content
Log in

Plasmon-Induced Photon Manipulation by Ag Nanoparticle-Coupled Graphene Thin-Film: Light Trapping for Photovoltaics

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper reports plasmon-enhanced light transmission through the Ag nanoparticle-coupled graphene thin-film deposited on fluorine-doped tin oxide (FTO) glass substrates. An experimental set-up is developed to quantify the photon enhancement due to metal nanoparticle-embedded graphene layer. The results show that a specific distribution of graphene nanosheets over Ag nanoparticle-deposited FTO glass can trap maximum normally incident light for photovoltaic applications. An enhancement of 6.35 % in the current density of silicon solar cell (kept under Ag-coated FTO glass) is observed for 30-μL graphene dispersion deposited on the FTO/Ag (3 nm). The results indicate the possibility of minimizing the reflection of incident radiation by combining plasmonic oscillations of metal nanoparticles with graphene plasmonics, which can be useful for optoelectronic devices, radiation sensors, and various types of photovoltaic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mokkapati S, Catchpole KR (2012) Nanophotonic light trapping in solar cells. J Appl Phys 112(10):101101

    Article  Google Scholar 

  2. Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62(1):243–249

    Article  Google Scholar 

  3. Bauer G (1934) Absolutwerte der optischen absorptionskonstanten von alkalihalogenidkristallen im gebiet ihrer ultravioletten eigenfrequenzen. Ann Phys 411(4):434–464

    Article  Google Scholar 

  4. Chen X, Jia B, Saha JK, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M (2012) Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett 12(5):2187–2192

    Article  CAS  Google Scholar 

  5. Tan H, Santbergen R, Smets AHM, Zeman M (2012) Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett 12(8):4070–4076

    Article  CAS  Google Scholar 

  6. Battaglia C, Hsu CM, Söderström K, Escarré J, Haug FJ, Charrière M, Boccard M, Despeisse M, Alexander DTL, Cantoni M, Cui Y, Ballif C (2012) Light trapping in solar cells: can periodic beat random? ACS Nano 6(3):2790–2797

    Article  CAS  Google Scholar 

  7. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  8. Akimov YA, Koh WS (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6(1):155–161

    Article  CAS  Google Scholar 

  9. Pors A, Uskov AV, Willatzen M, Protsenko IE (2011) Control of the input efficiency of photons into solar cells with plasmonic nanoparticles. Opt Commun 284(8):2226–2229

    Article  CAS  Google Scholar 

  10. Souza MLD, Corio P, Brolo AG (2012) Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices. Phys Chem Chem Phys 14(45):15722–15728

    Article  Google Scholar 

  11. Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101(10):104309

    Article  Google Scholar 

  12. Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci Appl 2:e92. doi:10.1038/lsa.2013.48

    Article  Google Scholar 

  13. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    Article  CAS  Google Scholar 

  14. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800

    Article  CAS  Google Scholar 

  15. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86(6):063106

    Article  Google Scholar 

  16. Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F, Polman A (2011) Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett 11(4):1760–1765

    Article  CAS  Google Scholar 

  17. Fahim NF, Jia BH, Shi ZR, Gu M (2012) Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells. Opt Express 20:A694–A705

    Article  CAS  Google Scholar 

  18. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  19. Kim KH, Park NM, Kim TY, Cho KS, Lee JI, Chu HY, Sung GY (2005) Fabrication of organic light-emitting diodes using ITO anodes grown on polyethersulfone (PES) substrates by pulse-laser deposition. Proc SPIE 5740:145–148

    Article  CAS  Google Scholar 

  20. Presley RE, Munsee CL, Park CH, Hong D, Wager JF, Keszler DA (2004) Tin oxide transparent thin-film transistors. J Phys D Appl Phys 37:2810–2813

    Article  CAS  Google Scholar 

  21. Dutta J, Roubeau P, Emeraud T, Laurent JM, Smith A, Leblanc F, Perrin J (1994) Application of pyrosol deposition process for large-area deposition of fluorine-doped tin dioxide thin films. Thin Solid Films 239:150–155

    Article  CAS  Google Scholar 

  22. Huafu Z, Hanfa L, Chengxin L, Aiping Z, Changkun Y (2010) Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J Semicond 31(8):083005-1-3

    Article  Google Scholar 

  23. Shewale PS, Patil SI, Uplane MD (2010) Preparation of fluorine-doped tin oxide films at low substrate temperature by an advanced spray pyrolysis technique, and their characterization. Semicond Sci Technol 25:115008-1-6

    Article  Google Scholar 

  24. Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131(11):3985–3990

    Article  CAS  Google Scholar 

  25. Gong F, Wang H, Xu X, Zhou G, Wang ZS (2012) In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J Am Chem Soc 134(26):10953–10958

    Article  CAS  Google Scholar 

  26. Chen Q, Zhou H, Hong Z, Luo S, Duan HS, Wang HH, Liu Y, Li G, Yang Y (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136(2):622–625

    Article  CAS  Google Scholar 

  27. Marí B, Mollar M, Soro D, Henríquez R, Schrebler R, Gómez H (2013) Electrodeposition of In2S3 thin films onto FTO substrate from DMSO solution. Int J Electrochem Sci 8:3510–3523

    Google Scholar 

  28. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  29. Maier SA (2012) Graphene plasmonics: all eyes on flatland. Nat Phys 8:581–582

    Article  CAS  Google Scholar 

  30. Yadav P, Tripathi B, Pandey K, Kumar M (2014) Effect of varying concentration and temperature on steady and dynamic parameters of low concentration photovoltaic energy system. Int J Electr Power Energy Syst 61:101–110

    Article  Google Scholar 

  31. Yadav P, Tripathi B, Lokhande M, Kumar M (2013) Estimation of steady state and dynamic parameters of low concentration photovoltaic system. Sol Energy Mater Sol Cells 112:65–72

    Article  CAS  Google Scholar 

  32. Tripathi B, Yadav P, Kumar M (2013) Plasmon-enhanced light trapping to improve efficiency of TiO2 nanorod-based dye-sensitized solar cell. Plasmonics 8:1501–1507. doi:10.1007/s11468-013-9564-4

    Article  CAS  Google Scholar 

  33. Tripathi B, Yadav P, Kumar M, Mukhopadhyay I (2014) Plasmon enhanced light trapping to improve efficiency of dye-sensitized solar cell. J Nanosci Nanotechnol 14:2624–2629

    Article  CAS  Google Scholar 

  34. Thouti E, Chander N, Dutta V, Komarala VK (2013) Optical properties of Ag nanoparticle layers deposited on silicon substrates. J Opt 15:035005-1-7

    Article  Google Scholar 

  35. Dai H, Li M, Li Y, Yu H, Bai F, Ren X (2012) Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface. Opt Express 20:A502–A509

    Article  CAS  Google Scholar 

  36. Niu J, Shin YJ, Son J, Lee Y, Ahn JH, Yang H (2012) Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles. Opt Express 20:19690–19696

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Office of Research and Sponsored Programs (ORSP), Pandit Deendayal Petroleum University, Gandhinagar for conducting research work reported in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanade, P., Yadav, P., Kumar, M. et al. Plasmon-Induced Photon Manipulation by Ag Nanoparticle-Coupled Graphene Thin-Film: Light Trapping for Photovoltaics. Plasmonics 10, 157–164 (2015). https://doi.org/10.1007/s11468-014-9790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9790-4

Keywords

Navigation