Skip to main content
Log in

Plasmon-Enhanced Infrared Absorption in Graphene Nanodot Array

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Novel optical properties of the nanopatterned graphene in the infrared and terahertz can be enhanced and tailored. The underlying nature is the excited plasmon of the patterned graphene with sub-wavelength feature sizes induce high optical field confinement, low intrinsic loss, and diverse optical tunability. Thus, high-quality graphene nanoarrays with fine nanostructures and low surface roughness should be needed to precisely adjust the graphene plasmon-enhanced optical properties. Here, electron beam exposure and inductively coupled plasma (ICP) etching techniques were used to fabricate the single-layer graphene nanodot array (GNDA) with a minimum size of 90 nm and a surface roughness of 0.846 nm. The measured absorption spectra in the infrared and terahertz range show an enhanced absorption compared to the unpatterned graphene, and a maximum rate of 10% is adopted in the infrared spectra. The absorption peaks undergo a slight red shift with the dot size increase. The experimental results show a good agreement with the numerical simulation. The results in our work provide a path to design and fabrication of novel photodetectors based on graphene’s plasmonic excitations with good light sensitivity and frequency selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during the current study are not publicly available due to inconvenient documents to organize but are available from the corresponding author on reasonable request.

References

  1. Goldflam M, Ruiz I, Howell S, Tauke-Pedretti A et al (2020) Monolithically-fabricated tunable long-wave infrared detectors based on dynamic graphene metasurfaces. Appl Phys Lett 116:191192. https://doi.org/10.1063/5.0007780

  2. Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W (2018) Sub-wavelength grating enhanced ultra-narrow graphene perfect absorber. Plasmonics 13:2267–2272. https://doi.org/10.1007/s11468-018-0748-9

    Article  CAS  Google Scholar 

  3. Yao W, Tang L, Nong J, Wang J, Yang J, Jiang Y, Shi H, Wei X (2020) Electrically tunable graphene metamaterial with strong broadband absorption. Nanotechnology 32:075703. https://doi.org/10.1088/1361-6528/abc44f

  4. Fei Z (2018) Electrically detecting infrared light. Nature Mater 17:950–951. https://doi.org/10.1038/s41563-018-0207-1

  5. Manpreet K, Manmeet K, Virender S (2018) Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment. Adv Colloid Interfac 259:44–64. https://doi.org/10.1016/j.cis.2018.07.001

  6. Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin SB, Smirnov D, Koshino M, McCann E, Bockrath M, Lauet CN (2011) Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys 7:948–952. https://doi.org/10.1038/nphys2103

    Article  CAS  Google Scholar 

  7. Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P (2013) Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat Commun 4:1951. https://doi.org/10.1038/ncomms2951

    Article  CAS  PubMed  Google Scholar 

  8. Eddin FBK, Fen YW, Sadrolhosseini AR, Josephine YCL, Daniyal ‬WMEMM (2022) Optical property analysis of chitosan-graphene quantum dots thin film and dopamine using surface plasmon resonance spectroscopy. Plasmonics 17:1985–1997. https://doi.org/10.1007/s11468-022-01680-1

    Article  CAS  Google Scholar 

  9. Cakmakyapan S, Sahin L, Pierini F, Ozbay E (2014) Resonance tuning and broadening of bowtie nanoantennas on graphene. Photonic Nanostruct 12:199–204. https://doi.org/10.1016/j.photonics.2014.02.001

    Article  Google Scholar 

  10. Xiong L, Forsythe C, Jung M et al (2019) Photonic crystal for graphene plasmons. Nat Commun 10:4780. https://doi.org/10.1038/s41467-019-12778-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–193. https://doi.org/10.1038/nature09379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nikitin AY, Guinea F, Martin-Moreno L (2012) Resonant plasmonic effects in periodic graphene antidot arrays. Appl Phys Lett 101:151119. https://doi.org/10.1063/1.4760230

  13. Yan H, Low T, Guinea F, Xia F, Avouris P (2013) Tunable phonon-induced transparency in bilayer graphene nanoribbons. Nano Lett 14:4581. https://doi.org/10.1021/nl501628x

    Article  CAS  Google Scholar 

  14. Fei Z, Rodin A, Andreev G et al (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85. https://doi.org/10.1038/nature11253

    Article  CAS  PubMed  Google Scholar 

  15. Ma Y, Zhi L (2022) Functionalized graphene materials: definition, classification, and preparation Strategies. Acta Phys Chim Sin 38:2101004. https://doi.org/10.3866/PKU.WHXB202101004

    Article  CAS  Google Scholar 

  16. Wang M, Huang Y, Yu L, Song Z, Liang D, Ruan S (2018) Multiwavelength thulium-doped fiber laser using a micro fiber-optic fabry–perot interferometer. Photon J 10:1–8. https://doi.org/10.1109/JPHOT.2018.2849998

  17. Baik S, Kim J, Lee HJ, Lee TH, Pang C (2018) Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Adv Sci 5:1800100. https://doi.org/10.1002/advs.201800100

    Article  CAS  Google Scholar 

  18. Liu F, Cubukcu E (2013) Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons. Phys Rev B 88:3925–3938. https://doi.org/10.1103/PhysRevB.88.115439

    Article  CAS  Google Scholar 

  19. Wenger T, Viola G, Kinaret J, Fogelström1 M, Tassin P (2017) High-sensitivity plasmonic refractive index sensing using graphene. 2D Mater 4:025103. https://doi.org/10.1088/2053-1583/aa70ff

  20. Yan H, Li X, Chandra B et al (2012) Tunable infrared plasmonic devices using graphene/ insulator stacks. Nature Nanotech 7:330–334. https://doi.org/10.1038/nnano.2012.59

    Article  CAS  Google Scholar 

  21. Rodrigo D, Limaj O, Janner D et al (2015) Mid-infrared plasmonic biosensing with graphene. Science 349:165–168. https://doi.org/10.1126/science.aab2051

  22. Liu Y, Gong T, Zheng Y et al (2018) Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry. Nanoscale 10:20013–20019. https://doi.org/10.1039/C8NR04996C

    Article  CAS  PubMed  Google Scholar 

  23. Wu C, Liu N, Hu H, Guo X, Liao B, Liu J, Wang L, Chen C, Yang X, Dai Q (2019) Detecting molecular vibrational modes of side chains and endpoints in nanoscale proteins with graphene plasmon. Chin Opt Lett 17:062401. https://doi.org/10.3788/COL201917.062401

  24. Ye L, Sui K, Zhang Y, Liu K (2019) Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nano-ribbons for near-infrared applications. Nanoscale 11:3229–3239. https://doi.org/10.1039/C8NR09157A

    Article  CAS  PubMed  Google Scholar 

  25. Zhu AY, Cubukcu E (2015) Graphene nanophotonic sensors. 2D Mater 2:032005. https://doi.org/10.1088/2053-1583/2/3/032005

  26. Hu H, Yang X, Zhai F, Hu D, Liu R, Liu K, Sun Z, Dai Q (2016) Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat Commun 7:12334. https://doi.org/10.1038/ncomms12334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zundel L, Manjavacas A (2017) Spatially resolved optical sensing using graphene nanodisk arrays. ACS Photonics 4:1831–1838. https://doi.org/10.1021/acsphotonics.7b00405

  28. Zhang K, Zhang L, Yap FL, Song P, Qiu CW, Loh KP (2016) Large-area graphene nanodot array for plasmon-enhanced infrared spectroscopy. Pub Med 12:1302–1308. https://doi.org/10.1002/smll.201503016

  29. Falkovsky LA (2008) Optical properties of graphene. J Phys 129:012004. https://doi.org/10.1088/1742-6596/129/1/012004

  30. Kuzmin DA, Bychkov IV, Shavrov VG, Temnov VV (2017) Plasmonics of magnetic and topological graphene-based nanostructures. Nanophotonics 7:597–611. https://doi.org/10.1515/nanoph-2017-0095

    Article  CAS  Google Scholar 

  31. Hutter E, Fendler J (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. https://doi.org/10.1002/adma.200400271

    Article  CAS  Google Scholar 

  32. Hwang EH, Sarma SD (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B Condens 75:205418.1–205418.6. https://doi.org/10.1103/PhysRevB.75.205418

  33. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. https://doi.org/10.1016/j.physrep.2004.11.001

    Article  CAS  Google Scholar 

  34. Zeranska-Chudek K, Lapinska A, Wroblewska A, Judek J, Duzynska A, Pawlowski WAM, Zdrojek M (2018) Study of the absorption coefficient of graphene-polymer composites. Sci Rep 8:9132. https://doi.org/10.1038/s41598-018-27317-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by Sichuan Science and Technology Program (Grant No. 2023YFH0089) and State Grid Science and Technology Project “Research on broadband electromagnetic measurement technology based on spectral characteristics of Rydberg atoms and Tunnel Magneto Resistance effect” (No. 5700-202127198A-0-0-00).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Zilong Yan, Fengjiang Peng, Ruotong Chen, and Xiaoping Huang. The first draft of the manuscript was written by Ruotong Chen and Zilong Yan. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoping Huang.

Ethics declarations

Ethics Approval

This is not an observational study that no ethical approval is required.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Peng, F., Yan, Z. et al. Plasmon-Enhanced Infrared Absorption in Graphene Nanodot Array. Plasmonics 18, 2205–2212 (2023). https://doi.org/10.1007/s11468-023-01939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01939-1

Keywords

Navigation