Skip to main content
Log in

Plasmonic Enhanced Optoelectronic Devices

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic metal nanostructures have recently attracted extensive research and developed into a promise approach for enhancing the performance of various optoelectronic devices. This brief article reviews recent research advances on the plasmonic enhanced optoelectronic devices and highlights a variety of strategies of incorporating plasmonic nanostructures into different optoelectronics such as solar cells, light-emitting diode, and multicolor photodetector, etc. In addition, the benefits of using various plasmonic metal nanostructures are discussed and the resulting enhancement mechanisms are displayed and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  2. Halas NJ (2010) Plasmonics: an emerging field fostered by nano letters. Nano Lett 10:3816–3822

    Article  CAS  Google Scholar 

  3. Jiang L, Guan J, Zhao LL et al (2009) pH-dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: the competition effect of hydroxyl groups with the carboxyl groups. Colloids Surf A 346:216–220

    Article  CAS  Google Scholar 

  4. Jiang L, Sun YH, Huo FW et al (2012) Free-standing one-dimensional plasmonic nanostructures. Nanoscale 4:66–75

    Article  CAS  Google Scholar 

  5. Weibel DB, DiLuzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5:209–218

    Article  CAS  Google Scholar 

  6. Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440–441

    Article  CAS  Google Scholar 

  7. Jiang L, Sun YH, Nowak C et al (2011) Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 5:8288–8294

    Article  CAS  Google Scholar 

  8. Jiang L, Tang YX, Liow CH et al (2013) Synthesis of fivefold stellate polyhedral gold nanoparticles with {110}-facets via a seed-mediated growth method. Small 9:705–710

    Article  CAS  Google Scholar 

  9. Jiang L, Wang WC, Fuchs H et al (2009) One-dimensional arrangement of gold nanoparticles with tunable interparticle distance. Small 5:2819–2822

    Article  CAS  Google Scholar 

  10. Hu M, Chen JY, Li ZY et al (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  11. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric Ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093–4096

    Article  CAS  Google Scholar 

  12. Haes AJ, Chang L, Klein WL et al (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271

    Article  CAS  Google Scholar 

  13. Jin YD (2012) Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine. Adv Mater 24:5153–5165

    Article  CAS  Google Scholar 

  14. Du JJ, Jiang L, Shao Q et al (2013) Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 9:1467–1481

    Article  CAS  Google Scholar 

  15. Du JJ, Sun YH, Jiang L et al (2011) Flexible colorimetric detection of mercuric Ion by simply mixing nanoparticles and oligopeptides. Small 7:1407–1411

    Article  CAS  Google Scholar 

  16. Du JJ, Yin SY, Jiang L et al (2013) A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chem Commun 49:4196–4198

    Article  CAS  Google Scholar 

  17. Paul A, Solis D, Bao K et al (2012) Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires. ACS Nano 6:8105–8113

    Article  CAS  Google Scholar 

  18. Zhang SP, Xu HX (2012) Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. ACS Nano 6:8128–8135

    Article  CAS  Google Scholar 

  19. Chen K, Adato R, Altug H (2012) Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6:7998–8006

    Article  CAS  Google Scholar 

  20. Fu YQ, Zhou XL (2010) Plasmonic lenses: a review. Plasmonics 5:287–310

    Article  CAS  Google Scholar 

  21. Dionne JA, Lezec HJ, Atwater HA (2006) Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett 6:1928–1932

    Article  CAS  Google Scholar 

  22. Kern J, Großmann S, Tarakina NV et al (2012) Atomic-scale confinement of resonant optical fields. Nano Lett 12:5504–5509

    Article  CAS  Google Scholar 

  23. Yoon I, Kim K, Baker SE et al (2012) Stimulus-responsive light coupling and modulation with nanofiber waveguide junctions. Nano Lett 12:1905–1911

    Article  CAS  Google Scholar 

  24. Stewart ME, Anderton CR, Thompson LB et al (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  25. Ren MX, Plum E, Xu JJ et al (2012) Giant nonlinear optical activity in a plasmonic metamaterial. Nat Commun 3:833

    Article  Google Scholar 

  26. Hess O, Pendry JB, Maier SA et al (2012) Active nanoplasmonic metamaterials. Nat Mater 11:573–584

    Article  CAS  Google Scholar 

  27. Tsung CK, Kuhn JN, Huang WY et al (2009) Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J Am Chem Soc 131:5816–5822

    Article  CAS  Google Scholar 

  28. Nagaoka Y, Wang T, Lynch J et al (2012) Binary assembly of colloidal semiconductor nanorods with spherical metal nanoparticles. Small 8:843–846

    Article  CAS  Google Scholar 

  29. Choi H, Lee J-P, Ko S-J et al (2013) Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano Lett 13:2204–2208

    Article  CAS  Google Scholar 

  30. Lu L, Luo Z, Xu T et al (2012) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13:59–64

    Article  Google Scholar 

  31. Gan Q, Bartoli FJ, Kafafi ZH (2012) Research highlights on organic photovoltaics and plasmonics. IEEE Photon J 4:620–624

    Article  Google Scholar 

  32. Kwon M-K, Kim J-Y, Kim B-H et al (2008) Surface-plasmon-enhanced light-emitting diodes. Adv Mater 20:1253–1257

    Article  CAS  Google Scholar 

  33. Gan QQ, Bartoli FJ, Kafafi ZH (2013) Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Adv Mater 25:2385–2396

    Article  CAS  Google Scholar 

  34. Janković V, Yang Y, You J et al (2013) Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano 7:3815–3822

    Article  Google Scholar 

  35. Banerjee P, Conklin D, Nanayakkara S et al (2010) Plasmon-induced electrical conduction in molecular devices. ACS Nano 4:1019–1025

    Article  CAS  Google Scholar 

  36. Liu Y, Cheng R, Liao L et al (2011) Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun 2:579

    Article  Google Scholar 

  37. Zheng YB, Yang Y-W, Jensen L et al (2009) Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett 9:819–825

    Article  CAS  Google Scholar 

  38. Mathieu LJ, Maurizio R, Romain Q (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356

    Google Scholar 

  39. Van Duyne RP (2004) Molecular plasmonics. Science 306:985–986

    Article  Google Scholar 

  40. Haes AJ, Haynes CL, McFarland AD et al (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  41. Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63

    Article  CAS  Google Scholar 

  42. Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  CAS  Google Scholar 

  43. Gu XF, Qiu T, Zhang WJ et al (2011) Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res Lett 6:1–12

    Article  Google Scholar 

  44. Jiang L, Zou CJ, Zhang DH et al (2013) Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small. doi:10.1002/smll.201302126

    Google Scholar 

  45. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782

    Article  CAS  Google Scholar 

  46. Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841

    Article  CAS  Google Scholar 

  47. Jiang L, Zhang HX, Zhuang JQ et al (2005) Sterically mediated two-dimensional architectures in aggregates of Au nanoparticles directed by phosphorothioate oligonucleotide-DNA. Adv Mater 17:2066–2070

    Article  CAS  Google Scholar 

  48. Schuller JA, Barnard ES, Cai WS et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  49. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  50. Kelzenberg MD, Boettcher SW, Petykiewicz JA et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  CAS  Google Scholar 

  51. Wang W, Wu SM, Reinhardt K et al (2010) Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett 10:2012–2018

    Article  CAS  Google Scholar 

  52. Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815–3817

    Article  CAS  Google Scholar 

  53. Heo M, Cho H, Jung JW et al (2011) High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv Mater 23:5689–5693

    Article  CAS  Google Scholar 

  54. Shi X, Ueno K, Takabayashi N et al (2013) Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titanium dioxide photoelectrode. J Phys Chem C 117:2494–2499

    Article  CAS  Google Scholar 

  55. Conklin D, Nanayakkara S, Park TH et al (2013) Exploiting plasmon-induced hot electrons in molecular electronic devices. ACS Nano 7:4479–4486

    Article  CAS  Google Scholar 

  56. Kao CS, Chen FC, Liao CW et al (2012) Plasmonic-enhanced performance for polymer solar cells prepared with inverted structures. Appl Phys Lett 101:193902

    Article  Google Scholar 

  57. Chen MC, Yang YL, Chen SW et al (2013) Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. ACS Appl Mater Interfaces 5:511–517

    Article  Google Scholar 

  58. Zhu JF, Xue M, Hoekstra R et al (2012) Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. Nanoscale 4:1978–1981

    Article  CAS  Google Scholar 

  59. Knight MW, Sobhani H, Nordlander P et al (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  60. Sundararaian SP, Grady NK, Mirin N et al (2008) Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. Nano Lett 8:624–630

    Article  Google Scholar 

  61. Hu MS, Chen HL, Shen CH et al (2006) Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat Mater 5:102–106

    Article  CAS  Google Scholar 

  62. Hyun JK, Lauhon LJ (2011) Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire. Nano Lett 11:2731–2734

    Article  CAS  Google Scholar 

  63. Oh K, Jeon W, Lee SS (2012) One-dimensional TiO2@Ag nanoarchitectures with interface-mediated implementation of resistance-switching behavior in polymer nanocomposites. ACS Appl Mater Interfaces 4:5727–5731

    Article  CAS  Google Scholar 

  64. Xiao Y, Yang JP, Cheng PP et al (2012) Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles. Appl Phys Lett 100:013308

    Article  Google Scholar 

  65. Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22:4794–4808

    Article  CAS  Google Scholar 

  66. Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16:133–146

    Article  CAS  Google Scholar 

  67. Chen B, Zhang W, Zhou X et al (2013) Surface plasmon enhancement of polymer solar cells by penetrating Au/SiO2 core/shell nanoparticles into all organic layers. Nano Energy 2:906–915

    Article  CAS  Google Scholar 

  68. Woo S, Jeong J, Lyu H et al (2012) In situ-prepared composite materials of PEDOT: PSS buffer layer-metal nanoparticles and their application to organic solar cells. Nanoscale Res Lett 7:1–6

    Article  Google Scholar 

  69. Hagglund C, Zach M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113–013113

    Article  Google Scholar 

  70. Choi H, Chen WT, Kamat PV (2012) Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6:4418–4427

    Article  CAS  Google Scholar 

  71. Brown MD, Suteewong T, Kumar RSS et al (2010) Plasmonic dye-sensitized solar cells using core−shell metal−insulator nanoparticles. Nano Lett 11:438–445

    Article  Google Scholar 

  72. Takanezawa K, Hirota K, Wei Q-S et al (2007) Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices. J Phys Chem C 111:7218–7223

    Article  CAS  Google Scholar 

  73. Lenes M, Koster LJA, Mihailetchi VD et al (2006) Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells. Appl Phys Lett 88:243502

    Article  Google Scholar 

  74. Zhang D, Choy WCH, Xie F et al (2013) Plasmonic electrically functionalized TiO2 for high-performance organic solar cells. Adv Funct Mater 23:4255–4261

    Article  CAS  Google Scholar 

  75. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:865–865

    Article  CAS  Google Scholar 

  76. Kang M-G, Xu T, Park HJ et al (2010) Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater 22:4378–4383

    Article  CAS  Google Scholar 

  77. Wang DH, Kim DY, Choi KW et al (2011) Enhancement of donor–acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50:5519–5523

    Article  CAS  Google Scholar 

  78. Sha WEI, Choy WCH, Chew WC (2010) A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Opt Express 18:5993–6007

    Article  CAS  Google Scholar 

  79. Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25:2596–2600

    Article  CAS  Google Scholar 

  80. Ostrowski JC, Mikhailovsky A, Bussian DA et al (2006) Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: the role of aggregates. Adv Funct Mater 16:1221–1227

    Article  CAS  Google Scholar 

  81. Yoon W-J, Jung K-Y, Liu J et al (2010) Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energy Mater Sol Cells 94:128–132

    Article  CAS  Google Scholar 

  82. Wang DH, Park KH, Seo JH et al (2011) Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv Energy Mater 1:766–770

    Article  CAS  Google Scholar 

  83. Kim S-S, Na S-I, Jo J et al (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307

    Article  Google Scholar 

  84. Du P, Cao Y, Li D et al (2013) Synthesis of thermally stable Ag@TiO2 core-shell nanoprisms and plasmon-enhanced optical properties for a P3HT thin film. RSC Adv 3:6016–6021

    Article  CAS  Google Scholar 

  85. Xu X, Kyaw AKK, Peng B et al (2013) A plasmonically enhanced polymer solar cell with gold–silica core–shell nanorods. Org Electron 14:2360–2368

    Article  CAS  Google Scholar 

  86. Kozanoglu D, Apaydin DH, Cirpan A et al (2013) Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org Electron 14:1720–1727

    Article  CAS  Google Scholar 

  87. Leonard K, Takahashi Y, You J et al (2013) Organic bulk heterojunction photovoltaic devices incorporating 2D arrays of cuboidal silver nanoparticles: enhanced performance. Chem Phys Lett 584:130–134

    Article  CAS  Google Scholar 

  88. Wang DH, Kim JK, Lim G-H et al (2012) Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates. RSC Adv 2:7268–7272

    Article  CAS  Google Scholar 

  89. Fang ZY, Wang YM, Liu Z et al (2012) Plasmon-induced doping of graphene. ACS Nano 6:10222–10228

    Article  CAS  Google Scholar 

  90. Chen HY, He CL, Wang CY et al (2011) Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes. ACS Nano 5:8223–8229

    Article  CAS  Google Scholar 

  91. Wang F, Li CH, Chen HJ et al (2013) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 135:5588–5601

    Article  CAS  Google Scholar 

  92. Schubert EF, Kim JK (2005) Solid-state light sources getting smart. Science 308:1274–1278

    Article  CAS  Google Scholar 

  93. Okamoto K, Niki I, Shvartser A et al (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601–605

    Article  CAS  Google Scholar 

  94. Sharma P, Liu CY, Hsu CF et al (2006) Ordered arrays of Ag nanoparticles grown by constrained self-organization. Appl Phys Lett 89:163110

    Article  Google Scholar 

  95. Koo WH, Jeong SM, Araoka F et al (2010) Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat Photon 4:222–226

    Article  CAS  Google Scholar 

  96. Cho KH, Ahn SI, Lee SM et al (2010) Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer. Appl Phys Lett 97:193306

    Article  Google Scholar 

  97. Koo WH, Jeong SM, Nishimura S et al (2011) Polarization conversion in surface-plasmon-coupled emission from organic light-emitting diodes using spontaneously formed buckles. Adv Mater 23:1003–1007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project Code, 21373144), and the National Research Foundation of Singapore (CREATE Programme of Nanomaterials for Energy and Water Management and NRF-RF2009-04). This is also a project supported by the Natural Science Foundation of Jiangsu Province (Project Code, SBK201341597).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Jiang or Xiaodong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Sun, J., Jiang, Y. et al. Plasmonic Enhanced Optoelectronic Devices. Plasmonics 9, 859–866 (2014). https://doi.org/10.1007/s11468-014-9682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9682-7

Keywords

Navigation