Skip to main content
Log in

Optical Fiber-Based Surface-Enhanced Raman Scattering Sensor Using Au Nanovoid Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic properties of gold nanovoid array substrates for fiber-based surface-enhanced Raman scattering (SERS) sensing are studied numerically and experimentally. In the nanovoid arrays, each void has openings on both sides, bottom hole facing the fiber tip for introducing incident light and collecting scattered light and the top hole exposed to the analyte solution for interrogating analyte molecules in the voids. Electromagnetic field modes are confined strongly in and around these nanovoids, acting as localized plasmon resonators. The enhanced electric field extends hundreds of nanometers into the voids, resulting in a large SERS-active zone several orders of magnitude larger than nanoparticle-based structures. The effect of structural parameters of the nanovoid arrays, including void diameter, Au film thickness, and bottom hole diameter, on electric field confinement in the voids is investigated using three-dimensional finite difference time domain simulation. Au nanovoid arrays are fabricated using a scalable, inexpensive nanosphere lithography fabrication method. The largest SERS signal is realized by tuning the localized plasmon resonance peak of Au nanovoid arrays to the laser excitation wavelength. Multiplexed detection capability with the fiber-based SERS sensor using Au nanovoid arrays is demonstrated by measuring the Raman spectrum of a mixture solution of diethylthiatricarbocyanine and crystal violet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fleischmann M (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  2. Jeanmaire DL, Vanduyne RP (1977) Surface Raman spectroelectrochemistry.1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84(1):1–20

    Article  CAS  Google Scholar 

  3. Albrecht MG, Creighton JA (1977) Anomalously interse Raman-spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217

    Article  CAS  Google Scholar 

  4. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  5. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  6. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26. doi:10.1039/b513431p

    Article  CAS  Google Scholar 

  7. Stiles PL, Dieringer JA, Shah NC, Van Duyne RR (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626. doi:10.1146/annurev.anchem.1.031207.112814

    Article  CAS  Google Scholar 

  8. Su L, Lee TH, Elliott SR (2009) Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper. Opt Lett 34(17):2685–2687

    Article  Google Scholar 

  9. Shi C, Zhang Y, Gu C, Chen B, Seballos L, Olson T, Zhang JZ (2009) Molecular fiber sensors based on surface enhanced Raman scattering (SERS). J Nanosci Nanotechnol 9(4):2234–2246

    Article  CAS  Google Scholar 

  10. Oo MK, Han Y, Martini R, Sukhishvili S, Du H (2009) Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt Lett 34(7):968–970

    Article  CAS  Google Scholar 

  11. Lan X, Han Y, Wei T, Zhang Y, Jiang L, Tsai HL, Xiao H (2009) Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt Lett 34(15):2285–2287

    Article  CAS  Google Scholar 

  12. Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR (2009) Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens Bioelectron 24(5):1531–1535

    Article  CAS  Google Scholar 

  13. Kim K, Lee JW, Lee HB, Shin KS (2009) Novel fabrication of Au nanoparticle films on planar and curved surfaces of glass and fiber materials. Langmuir 25(17):9697–9702

    Article  CAS  Google Scholar 

  14. Zheng X, Guo D, Shao Y, Jia S, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2008) Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir 24(8):4394–4398

    Article  CAS  Google Scholar 

  15. Yan H, Liu J, Yang C, Jin G, Gu C, Hou L (2008) Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe. Opt Express 16(11):8300–8305

    Article  CAS  Google Scholar 

  16. White DJ, Stoddart PR (2005) Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt Lett 30(6):598–600

    Article  Google Scholar 

  17. Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F (2009) Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 9(3):1132–1138

    Article  CAS  Google Scholar 

  18. Baumberg JJ, Kelf TA, Sugawara Y, Cintra S, Abdelsalam ME, Bartlett PN, Russell AE (2005) Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett 5(11):2262–2267

    Article  CAS  Google Scholar 

  19. Cole RM, Baumberg JJ, Garcia de Abajo FJ, Mahajan S, Abdelsalam M, Bartlett PN (2007) Understanding plasmons in nanoscale voids. Nano Lett 7(7):2094–2100

    Article  CAS  Google Scholar 

  20. Coyle S, Netti MC, Baumberg JJ, Ghanem MA, Birkin PR, Bartlett PN, Whittaker DM (2001) Confined plasmons in metallic nanocavities. Phys Rev Lett 87(17):176801

    Article  CAS  Google Scholar 

  21. Hao Y, Zhu FQ, Chien CL, Searson PC (2007) Fabrication and magnetic properties of ordered macroporous nickel structures. J Electrochem Soc 154(2):D65–D69

    Article  CAS  Google Scholar 

  22. Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394(7):1719–1727

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the National Science Foundation (ECCS-0901849 and CMMI-1000831) Department of Energy (DE-FG02-O4CH11280) and the Texas Higher Education Coordinating Board Norman Hackerman Advanced Research Program. We thank the Characterization Center for Materials and Biology (CCMB) at University of Texas at Arlington for providing financial and technical support for the electron microscopic characterization of the nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaowu Hao or Digant P. Davé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SH., Nyagilo, J., Wu, J. et al. Optical Fiber-Based Surface-Enhanced Raman Scattering Sensor Using Au Nanovoid Arrays. Plasmonics 7, 501–508 (2012). https://doi.org/10.1007/s11468-012-9335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9335-7

Keywords

Navigation