Skip to main content
Log in

Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles: Experiments and Theory

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Localized Surface Plasmons (LSP) on metallic nanoparticles of different shapes are investigated by extinction spectroscopy. Experimental results are compared to simulations by a Finite-Difference Time-Domain (FDTD) method. Three different shapes of nanoparticles are compared, oblates, prolates and ellipsoids, in terms of spectral tunability of the LSP resonance (LSPR). It is found that the complete geometry of the nanoparticle must be given to truly define the LSP resonance and that ellipsoids offer the widest spectral tunability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874

    Article  CAS  Google Scholar 

  2. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings, vol 111 of springer tracts in modern physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Krenn JR, Leitner A, Aussenegg FR (2004) Encyclopedia of nanoscience and nanotechnology. American Scientific, California

    Google Scholar 

  4. Zayats AV, Smolyaninov II (2003) Near-field photonics: surface plasmon polaritons and localized surface plasmons. J Opt A Pure Appl Opt 5:16

    Article  Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424: 824

    Article  CAS  Google Scholar 

  6. Pendry J (1999) Playing tricks with light. Science 285: 1687

    Article  CAS  Google Scholar 

  7. Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69(9): 4159

    Article  CAS  Google Scholar 

  8. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review, Sens Actuators B 54:3

    Article  Google Scholar 

  9. Félidj N, Aubard J, Lévi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095

    Article  CAS  Google Scholar 

  10. Grand J, Lamy de la Chapelle M, Bijeon J-L, Adam P-M, Vial A, Royer P (2005) Role of localized surface plasmons in surface-enhanced raman scattering of shape-controlled metallic particles in regular arrays. Phys Rev B 72(3):033407

    Article  CAS  Google Scholar 

  11. Haynes CL, McFarland AD, Zhao LL, van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337

    Article  CAS  Google Scholar 

  12. Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZ-H, Spatz JP, Moller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77:2949

    Article  Google Scholar 

  13. Little JW, Ferrell TL, Callcott TA, Arakawa ET (1982) Radiative decay of surface plasmons on oblate spheroids. Phys Rev B 26:5953

    Article  CAS  Google Scholar 

  14. Royer P, Bijeon J-L, Goudonnet JP, Inagaki T, Arakawa ET (1989) Optical absorbance of silver oblate particles: substrate and shape effects. Surf Sci 217:384

    Article  CAS  Google Scholar 

  15. Little JW, Callcott TA, Ferrell TL, Arakawa ET (1984) Surface-plasmon radiation from ellipsoidal silver spheroids. Phys Rev B 29:1606

    Article  CAS  Google Scholar 

  16. Wokaun, A (1984) Surface-enhanced electromagnetic processes. Solid state phys 38:223

    Article  CAS  Google Scholar 

  17. Ditlbacher H, Krenn JR, Lamprecht B, Leitner A, Aussenegg FR (2000) Spectrally coded optical data storage by metal nanoparticles. Opt Lett 25:563

    CAS  Google Scholar 

  18. Grand J, Kostcheev S, Bijeon JL, Lamy de la Chapelle M, Adam PM, Rumyantseva A, Lérondel G, Royer P (2003) Optimization of SERS-active substrates for near-field Raman spectroscopy. Synth Met 139:621

    Article  CAS  Google Scholar 

  19. Schider G, Krenn JR, Gotschy W, Lamprecht B, Ditlbacher H, Leitner A, Aussenegg FR (2001) Optical properties of Ag and Au nanowire gratings. J Appl Phys 90(8):3825

    Article  CAS  Google Scholar 

  20. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Chem Phys B 107:668

    Article  CAS  Google Scholar 

  21. Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48:957

    Article  CAS  Google Scholar 

  22. Meier M, Wokaun A (1983) Enhanced fields on large metal particles: dynamic depolarization. Opt Lett 8:581

    Article  CAS  Google Scholar 

  23. Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Chem Phys B 107:7343

    Article  CAS  Google Scholar 

  24. Hao E, Schatz GC (2004) Electromagnetic field around silver nanoparticles and dimers. J Phys Chem B 120(1):357

    Article  CAS  Google Scholar 

  25. Vial A, Grimault A-S, Macías D, Barchiesi D, Lamy de la Chapelle M (2005) Improved analytical fit of gold dispersion: application to the modelling of extinction spectra with the FDTD method. Phys Rev B 71(8):085416

    Article  CAS  Google Scholar 

  26. Taflove A, Hagness SC (2000) Computationnal electrodynamics: the Finite-Difference Time-Domain method. Artech House, Norwood, Massachussetts

    Google Scholar 

  27. Kunz K, Luebbers R (1993) The finite difference time domain method for electromagnetics. CRC, Boca Raton, Florida

    Google Scholar 

  28. Gotschy W, Vonmetz K, Leitner A, Aussenegg FR (1996) Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign. Appl Phys B 63:381

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Bijeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grand, J., Adam, PM., Grimault, AS. et al. Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles: Experiments and Theory. Plasmonics 1, 135–140 (2006). https://doi.org/10.1007/s11468-006-9014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-006-9014-7

Key words

PACS

Navigation