Skip to main content
Log in

Grenvillian orogeny in the Southern Cathaysia Block: Constraints from U-Pb ages and Lu-Hf isotopes in zircon from metamorphic basement

  • Published:
Chinese Science Bulletin

Abstract

Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0–0.9 Ga) materials with minor Paleo-to Mesoproterozoic and late Neoproterozoic (0.8–0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 1991, 252: 1409–1411

    Article  PubMed  Google Scholar 

  2. Moores E M. Southwest U.S.-East Antarctic (SWEAT) connection; a hypothesis. Geology, 1991, 19: 425–428

    Article  Google Scholar 

  3. Karlstrom K E, Åhäll Karl-Inge, Harlan S S, et al. Long-lived convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precam Res, 2001, 111: 5–30

    Article  CAS  Google Scholar 

  4. Riviers T. Lithotectonic elements of the Grenville Province: review and tectonic implication. Precam Res, 1997, 86: 117–154

    Article  Google Scholar 

  5. Moore J M, Thompson P. The Flinton Group: a late Precambrian metasedimentary sequence in the Grenville Province of Eastern Ontario. Can J Earth Sci, 1980, 17: 1685–1707

    Google Scholar 

  6. Davidson A. A review of the Grenville orogen in its North American type. J Aus Geol Geophy, 1995, 16: 3–24

    Google Scholar 

  7. Mosher S. Tectonic evolution of the southern Laurentian Grenville orogenic belt. GSA Bull, 1998, 110: 1357–1375

    Article  Google Scholar 

  8. White R W, Clarke G L, Nelson D R. SHRIMP U-Pb zircon dating of Grenville-age events in the western part of the Musgrave Block, central Australia. J Metamorph Geol, 1999, 17(5): 465–481

    Article  CAS  Google Scholar 

  9. Klaus M, Michael A C. The thermal history of the Eastern Ghats Belt (India) as revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmaticminerals: implications for the SWEAT correlation. Precam Res, 1999, 94: 251–271

    Article  Google Scholar 

  10. Boger S D, Carson C J, Wilson C M, et al. Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, east Antarctica: evidence for a single protracted orogenic event. Precam Res, 2000, 104: 1–24

    Article  CAS  Google Scholar 

  11. Park R G. Plate kinematic history of Baltica during the middle to late Proterozoic: a model. Geology, 1992, 20: 725–728

    Article  Google Scholar 

  12. Romer R L, Smeds S A. U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden. Precam Res, 1996, 76: 15–30

    Article  CAS  Google Scholar 

  13. Jacobs J, Thomas R J, Weber K. Accretion and indentation tectonics at the southern edge of the Kaapvaal Craton during the Kibaran (Grenville) Orogeny. Geology, 1993, 21: 203–206

    Article  Google Scholar 

  14. Pinna P, Jourde G, Calvez J Y, et al. The Mozambique Belt in northern Mozambique: Neoproterozoic (1100-850 Ma) crustal growth and tectogenesis, and superimposed Pan-African (800-550 Ma) tectonism. Precam Res, 1993, 62: 1–59

    Article  CAS  Google Scholar 

  15. Li Z X, Zhang L, Powell C M. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23: 407–410

    Article  Google Scholar 

  16. Li Z X, Li X H, Zhou H, et al. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 2002, 30: 163–166

    Article  CAS  Google Scholar 

  17. Li X H, Zhao J X, Mculloch M T, et al. Geochemical and Sm-Nd isotopic study of Neoproterozoic Ophiolites from southeastern China: petrogenesis and tectonic implication. Precam Res, 1997, 81: 129–144

    Article  CAS  Google Scholar 

  18. Zheng J, Griffin W L, O’Reilly S Y, et al. Widespread Archaean basement beneath the Yangtze craton: Geology, 2006, 34: 417–420

    Article  Google Scholar 

  19. Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of the Precambrian basement sequences of the Jiangnan orogen: implications for timing of the assembly of the Yangtze and Cathaysia blocks. Precam Res, 2007, 159: 117–131

    Article  CAS  Google Scholar 

  20. Guangdong Bureau of Geology. 1:200000 Introduction of Geological Map of Guangzhou Breadth. Beijing: Geological Publishing House, 1965

  21. Liu J X, Zhuang W M. Zircon Pb-Pb ages of Pre-Sinian basement in central Guangdong Province and their geological significance. Geol Miner Resour South China (in Chinese with English abstract), 2003, 2: 52–57

    Google Scholar 

  22. Liu B X, Liu C G, Qiu Y Q. The Pb-Pb isotopic ages and geologic significance of gneissic granite in Hezi, Jiangxi. Volcanol Min Resour (in Chinese with English abstract), 2001, 22(4): 264–268

    Google Scholar 

  23. Shaw D M. The origin of the Apsley gneiss, Ontario. Can J Earth Sci, 1972, 9: 18–35

    CAS  Google Scholar 

  24. Yu J H, Wang L J, Zhou X M, et al. Compositions and formation history of the basement metamorphic rocks in northeastern Guangdong Province. J Chin Uni Geosci (Earth Science) (in Chinese with English abstract), 2006, 31(1): 38–48

    CAS  Google Scholar 

  25. Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47–69

    Article  CAS  Google Scholar 

  26. Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61: 237–269

    Article  CAS  Google Scholar 

  27. Scherer E, Munker C, Mezger K. Calibration of the Lutetium-Hafnium clock. Science, 2001, 293: 683–687

    Article  PubMed  CAS  Google Scholar 

  28. Williams I S, Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contrib Miner Petrol, 1987, 97: 205–217

    Article  CAS  Google Scholar 

  29. Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 2002, 184: 123–138

    Article  CAS  Google Scholar 

  30. Bingen B, Austrheim H, Whitehouse M J, et al. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arc, Caledonides of W-Norway. Contrib Miner Petrol, 2004, 147: 671–683

    Article  CAS  Google Scholar 

  31. Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth Planet Sci Lett, 2005. 240: 378–400

    Article  CAS  Google Scholar 

  32. Chen Z Q, Li W H, Guo L. Granite of Proterozoic eon found in northeast Guangdong. Guangdong Geol (in Chinese with English abstract), 2001, 16(4): 16–21

    Google Scholar 

  33. Xu X S, O’Reilly S Y, Griffin W L, et al. Relict Proterozoic basement in the Nanling Mountains (S E China) and its tectonothermal overprinting. Tectonics, 2005, 24, TC2003, doi: 10.1029/2004 TC001652

  34. Yu J H, Zhou X M, O’Reilly S Y, et al. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu-Hf isotopic studies of single zircon grains. Chin Sci Bull, 2005, 50(18): 2080–2089

    Article  CAS  Google Scholar 

  35. Yu J H, O’Reilly S Y, Wang L J, et al. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chin Sci Bull, 2007, 52(1): 13–22

    Article  CAS  Google Scholar 

  36. Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Res, 2007, 12(1–2): 166–183

    Article  CAS  Google Scholar 

  37. Condon D, Zhu M, Bowring S, et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95–98

    Article  PubMed  CAS  Google Scholar 

  38. Chu C L, Wolfgang T, Zhang Q R, et al. U-Pb zircon age for the Nanhua-Sinian boundary. Chin Sci Bull, 2005, 50: 716–718

    Article  CAS  Google Scholar 

  39. Liu Y C, Li S G, Gu X F, et al. Zircon SHRIMP U-Pb dating for olivine gabbro at Wangmuguan in the Beihuaiyang zone and its geological significance. Chin Sci Bull, 2006, 51(18): 2500–2506

    Article  CAS  Google Scholar 

  40. Yin C, Tang F, Liu Y, et al. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: constraint on the age of Marinoan glaciation. Episodes, 2005, 28: 48–49

    Google Scholar 

  41. Chen L, Ma C Q, She Z B, et al. Liulin Gabbro in the Beihuaiyang Tectonic Belt of the Dabie Orogen: A Witness of the Late Neoproterozoic rifting event. J Chin Uni Geosci (Earth Science) (in Chinese with English abstract), 2006, 31: 578–584

    CAS  Google Scholar 

  42. Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precam Res, 2006, 146: 179–212

    Article  CAS  Google Scholar 

  43. Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol, 2006, 231: 135–158

    Article  CAS  Google Scholar 

  44. Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos, 2007, 96: 127–150

    Article  CAS  Google Scholar 

  45. Chen R X, Zheng Y F, Zhao Z F, et al. Zircon U-Pb ages and Hf isotopes in ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. J Metamorph Geol, 2007, 25: 873–894

    Article  CAS  Google Scholar 

  46. Zheng, Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precam Res, 2008, in press

  47. Li X H, Zhou G Q, Zhao J X, et al. SHRIMP ion microprobe zircon U-Pb age of the NE Jiangxi ophiolite and its tectonic implications. Geochemica (in Chinese with English abstract), 1994, 23(2): 125–131

    CAS  Google Scholar 

  48. Ye M F, Li X H, Li W X, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of Yangtze Block. Gondwana Res, 2007, 12: 144–156

    Article  CAS  Google Scholar 

  49. Li Z X, Wartho J A, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints. Precam Res, 2007, 159: 79–94

    Article  CAS  Google Scholar 

  50. Li X H. U-Pb zircon ages of granites from the southern margin of the Yangtze margin: timing of Neoproterozoic Jinning Orogen in SE China and implication for Rodinia assembly. Precam Res, 1999, 97: 43–57

    Article  CAS  Google Scholar 

  51. Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precam Res, 2006, 145: 111–130

    Article  CAS  Google Scholar 

  52. Zhong Y F, Ma C Q, She Z B, et al. SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province. J Chin Uni Geosci (Earth Science) (in Chinese with English abstract), 2005, 30(6): 685–69

    CAS  Google Scholar 

  53. Zhou H W, You Z D, Zhong Z Q, et al. New findings of low pressure granulite facies metamorphic age in the Yunkai uplift. Geol Sci Tech Inf (in Chinese with English abstract), 1994, 13(3): 23–26

    Google Scholar 

  54. Qin X F, Pan Y M, Li J, et al. Zircon SHRIMP U-Pb geochronology of the Yunkai metamorphic complex in southeastern Guangxi, China. Geol Bull Chin (in Chinese with English abstract), 2006, 25(5): 553–559

    CAS  Google Scholar 

  55. Ding X, Zhou X M, Sun T. The episodic growth of the continental crustal basement in South China: Single zircon LA-ICPMS U-Pb dating of Guzhai granodiorite in Guangdong. Geol Rev (in Chinese with English abstract), 2005, 51(4): 382–392

    Google Scholar 

  56. Shu L S, Deng P, Yu J H. Geochronology and geochemistry of rhyolite in western Wuyishan. Sci China Ser D-Earth Sci, 2008, in press

  57. Guangdong Bureau of Geology and Mineral Resources. Reg Geol Guangdong Province. Beijing: Geological Publishing House, 1988

  58. Jiang G, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): Paleogeographic implications. Geology, 2003, 31: 917–920

    Article  Google Scholar 

  59. Zhang Q R, Piper J D A. Palaeomagnetic study of Neoproterozoic glacial rocks of the Yangzi Block: palaeolatitude and configuration of South China in the late Proterozoic Supercontinent. Precam Res, 1997, 85: 173–199

    Article  Google Scholar 

  60. Yang Z Y, Sun Z M, Yang T S, et al. A long connection (750-380 Ma) between South China and Australia: paleomagnetic constraints. Earth Planet Sci Lett, 2004, 220: 423–434

    Article  CAS  Google Scholar 

  61. Zheng Y F. Position of South China in configuration of Neoproterozoic supercontinent. Chin Sci Bull, 2004, 49(8): 751–753

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinHai Yu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40634022, 40221301 and 40672125). This is publication No. 511 from the National Key Centre for Geochemical Evolution and Metallogeny of Continents.

About this article

Cite this article

Wang, L., Yu, J., O’Reilly, S. et al. Grenvillian orogeny in the Southern Cathaysia Block: Constraints from U-Pb ages and Lu-Hf isotopes in zircon from metamorphic basement. Chin. Sci. Bull. 53, 3037–3050 (2008). https://doi.org/10.1007/s11434-008-0262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0262-0

Keywords

Navigation