Skip to main content
Log in

Trace element signature and U–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Secondary-ion mass spectrometry (SIMS) U–Pb and trace element data are reported for zircon to address the controversial geochronology of eclogite-facies metamorphism in the Lindås nappe, Bergen Arcs, Caledonides of W Norway. Caledonian eclogite-facies overprint in the nappe was controlled by fracturing and introduction of fluid in the Proterozoic—Sveconorwegian—granulite-facies meta-anorthosite-norite protolith. Zircon grains in one massive eclogite display a core–rim structure. Sveconorwegian cores have trace element signatures identical with those of zircon in the granulite protolith, i.e. 0.31≤Th/U≤0.89, heavy rare earth element (HREE) enrichment, and negative Eu anomaly. Weakly-zoned to euhedral oscillatory-zoned Caledonian rims are characterized by Th/U≤0.13, low LREE content (minimum normalized abundance for Pr or Nd), variable enrichment in HREE, and no Eu anomaly. A decrease of REE towards the outermost rim, especially HREE, is documented. This signature reflects co-precipitation of zircon with garnet and clinozoisite in a feldspar-absent assemblage, and consequently links zircon to the eclogite-facies overprint. The rims provide a mean 206Pb/238U crystallization age of 423±4 Ma. This age reflects eclogite-forming reactions and fluid–rock interaction. This age indicates that eclogite-facies overprint in the Lindås nappe took place at the onset of the Scandian (Silurian) collision between Laurentia and Baltica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen TB (1998) Extensional tectonics in the Caledonides of southern Norway, an overview. Teconophysics 285:333–351

    Article  Google Scholar 

  • Andersen T, Austrheim H, Burke EA (1991) Mineral–fluid-melt interactions in high-pressure shear zones in the Bergen Arcs nappe complex, Caledonides of W. Norway: implications for the fluid regime in Caledonian eclogite-facies metamorphism. Lithos 27:187–204

    Article  CAS  Google Scholar 

  • Andersen TB, Berry HN, Lux DR, Andresen A (1998) The tectonic significance of pre-Scandian 40Ar/39Ar phengite cooling ages in the Caledonides of western Norway. J Geol Soc London 155:297–309

    Google Scholar 

  • Austrheim H (1987) Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet Sci Lett 81:221–232

    Article  CAS  Google Scholar 

  • Austrheim H, Erambert M, Boundy TM (1996) Garnets recording deep crustal earthquakes. Earth Planet Sci Lett 139:223–238

    Article  CAS  Google Scholar 

  • Austrheim H, Erambert M, Engvik AK (1997) Processing of crust in the root of the Caledonian continental collision zone: the role of eclogitization. Teconophysics 273:129–153

    Article  CAS  Google Scholar 

  • Bea F, Montero P, Garuti G, Zacharini F (1997) Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnet. A LA-ICP-MS study. Geostan Newslett 21:253–270

    CAS  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare-earth elements, Th and U over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite and monazite in orthogneisses from SW Norway. Geochim Cosmochim Acta 60:1341–1354

    Article  CAS  Google Scholar 

  • Bingen B, Austrheim H, Whitehouse M (2001a) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of W. Norway and implications for zircon geochronology. J Petrol 42:355–375

    Google Scholar 

  • Bingen B, Davis WJ, Austrheim H (2001b) Zircon U–Pb geochronology in the Bergen Arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. Geol Soc Am Bull 113:640–649

    CAS  Google Scholar 

  • Bjørnerud MG, Austrheim H, Lund MG (2002) Processes leading to eclogitization (densification) of subducted and tectonically buried crust. J Geophys Res 107(B10):2252, 1–18. DOI 10.1029/2001JB000527

    Google Scholar 

  • Boundy TM, Fountain DM, Austrheim H (1992) Structural development and petrofabrics of eclogite facies shear zones in the granulite facies complex, Bergen Arcs, W Norway: implications for deep crustal deformational processes. J Metamorphic Geol 10:127–146

    CAS  Google Scholar 

  • Boundy TM, Essene EJ, Hall CM, Austrheim H, Halliday AN (1996) Rapid exhumation of lower crust during continent–continent collision and late extension: evidence from 40Ar/39Ar incremental heating of hornblendes and muscovites, Caledonian orogen, western Norway. Geol Soc Am Bull 108:1425–1437

    CAS  Google Scholar 

  • Boundy TM, Hall CM, Li G, Essene EJ, Halliday AN (1997a) Fine-scale isotopic heterogeneities and fluids in the deep crust: a 40Ar/39Ar laser ablation and TEM study of muscovite from a granulite–eclogite transition zone. Earth Planet Sci Lett 148:223–242

    Google Scholar 

  • Boundy TM, Mezger K, Essene EJ (1997b) Temporal and tectonic evolution of the granulite-eclogite association from the Bergen Arcs, western Norway. Lithos 39:159–179

    CAS  Google Scholar 

  • Burton KW, Kohn MJ, Cohen AS, O’Nions RK (1995) The relative diffusion of Pb, Nd, Sr and O in garnet. Earth Planet Sci Lett 133:199–211

    CAS  Google Scholar 

  • Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc London 159:631–644

    Google Scholar 

  • Cohen AS, O’Nions RK, Siegenthaler R, Griffin WL (1988) Chronology of the pressure–temperature history recorded by a granulite terrain. Contrib Mineral Petrol 98:303–311

    CAS  Google Scholar 

  • Corfu F, Andersen TB (2002) U–Pb ages of the Dalsfjord Complex, SW Norway, and their bearing on the correlation of allochthonous crystalline segments of the Scandinavian Caledonides. Int J Earth Sci 91:955–963

    Article  CAS  Google Scholar 

  • Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mine Mag 65:749–758

    Article  CAS  Google Scholar 

  • Dunning GR, Pedersen R-B (1988) U–Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus. Contrib Mine Petrol 98:13–23

    CAS  Google Scholar 

  • Erambert M, Austrheim H (1993) The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib Mineral Petrol 115:204–214

    Google Scholar 

  • Fossen H, Dunlap WJ (1998) Timing and kinematics of Caledonian thrusting and extensional collapse, southern Norway: evidence from 40Ar/39Ar thermochronology. J Struct Geol 20:765–781

    Article  Google Scholar 

  • Fraser G, Ellis D, Eggins S (1997) Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25:607–610

    CAS  Google Scholar 

  • Frei D, Liebscher A, Wittenberg A, Shaw CSJ (2003) Crystal chemical controls on rare earth element partitioning between epidote-group minerals and melts: an experimental and theoretical study. Contrib Mineral Petrol 146:192–204

    Article  CAS  Google Scholar 

  • Gebauer D, Lappin MA, Grünenfelder M, Wyttenbach A (1985) The age and origin of some Norwegian eclogites: a U–Pb zircon and REE study. Chem Geol 52:227–247

    CAS  Google Scholar 

  • Gebauer D, Schertl H-P, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:5–24

    CAS  Google Scholar 

  • Gee DG (1975) A tectonic model for the central part of the Scandinavian Caledonides. Amer J Sci 275-A:468–515

    Google Scholar 

  • Glodny J, Kühn A, Austrheim H (2002) Rb/Sr record of fluid–rock interaction in eclogites, Bergen Arcs, Norway. Geochim Cosmochim Acta 66(S1):A280

    Article  Google Scholar 

  • Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    CAS  Google Scholar 

  • Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306

    Article  CAS  Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302

    CAS  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorphic Geol 18:423–439

    Article  CAS  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    CAS  Google Scholar 

  • Jamtveit B, Bucher-Nurminen K, Austrheim H (1990) Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, Western Norway. Contrib Mineral Petrol 104:184–193

    Google Scholar 

  • Jamtveit B, Austrheim H, Malthe-Sørenssen A (2000) Accelerated hydration of the earth’s deep crust induced by stress perturbations. Nature 408:75–78

    Article  CAS  PubMed  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649

    CAS  Google Scholar 

  • Kühn A, Glodny J, Iden K, Austrheim H (2000) Retention of Precambrian Rb/Sr phlogopite ages through Caledonian eclogite facies metamorphism, Bergen Arc Complex, W Norway. Lithos 51:305–330

    Article  Google Scholar 

  • Kühn A, Glodny J, Austrheim H, Råheim A (2002) The Caledonian tectono-metamorphic evolution of the Lindås Nappe: constraints from U–Pb, Sm–Nd and Rb–Sr ages of granitoid dykes. Norsk Geol Tidsskr 82:45–57

    Google Scholar 

  • Ludwig KR (2001) Users manual for Isoplot/Ex version 2.49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 1a, Berkeley

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). In: Vance D, Müller W, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures. Geol Soc Lond Spec Publ 220:65–81

    Google Scholar 

  • Otamendi JE, de la Rosa JD, Patiño Douce AE, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162

    Article  CAS  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gordon MP, Jackson SE, Neal CR, Chenery SP (1996) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostan Newslett 21:115–144

    Google Scholar 

  • Pidgeon RT, Nemchin AA, Hitchen GJ (1998) Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U–Pb ages. Contrib Mineral Petrol 132:288–299

    Article  CAS  Google Scholar 

  • Ragnhildstveit J, Helliksen D (1997) Geologisk kart over Norge, berggrunnskart Bergen, 1:250000. Norges Geologiske Undersøkelse, Trondheim

  • Roberts D (2003) The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues. Teconophysics 365:283–299

    Article  CAS  Google Scholar 

  • Rockow KM, Haskin LA, Jolliff BL, Fountain DM (1997) Constraints on element mobility associated with the conversion of granulite to eclogite along fractures in an anorthositic complex on Holsnøy, Norway. J Metamorphic Geol 15:401–418

    CAS  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138

    Article  CAS  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187

    Article  CAS  Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet Sci Lett 167:141–158

    Article  CAS  Google Scholar 

  • Scaillet S (1998) K-Ar (40Ar-39Ar) geochronology of ultrahigh pressure rocks. In: Hacker BR, Liou JG (eds) When continents collide: geodynamics and geochemistry of Ultrahigh-pressure rocks. Kluwer, The Netherlands, pp 161–201

  • Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201

    CAS  Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    CAS  Google Scholar 

  • Stern RA (1997) The GSC Sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon U–Th–Pb age determination and performance evaluation. Radiogenic age and isotopic studies, report 10. Geological Survey of Canada, Current Research 97-F:1–31

  • Sun W, Williams IS, Li S (2002) Carboniferous and triassic eclogites in the western Dabie Mountains, east-central China: evidence for protracted convergence of the North and South China blocks. J Metamorphic Geol 20:873–886

    Article  CAS  Google Scholar 

  • Thöni M, Jagoutz E (1992) Some new aspects of dating eclogites in orogenic belts: Sm–Nd, Rb–Sr, and Pb–Pb isotopic results from the Austroalpine Saualpe and Koralpe type-locality (Carinthia/Styria, southeastern Austria). Geochim Cosmochim Acta 56:347–368

    Article  Google Scholar 

  • Tucker RD, McKerrow WS (1995) Early paleozoic chronology: a review in light of new U–Pb zircon ages from Newfoundland and Britain. Can J Earth Sci 32:368–379

    CAS  Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404

    Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74

    CAS  Google Scholar 

  • Whitehouse MJ, Claesson S, Sunde T, Vestin J (1997) Ion microprobe U–Pb zircon geochronology and correlation of Archaean gneisses from the Lewisian complex of Gruinard Bay, northwestern Scotland. Geochim Cosmochim Acta 61:4429–4438

    Article  CAS  Google Scholar 

  • Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies. Chem Geol 160:201–224

    Article  CAS  Google Scholar 

  • Zack T, Foley SF, Rivers T (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol 43:1947–1974

    Google Scholar 

Download references

Acknowledgements

Secondary-ion mass spectrometry data were acquired at the Nordsim laboratory, operated and financed under an agreement between the research councils of Denmark, Norway, and Sweden, the Geological Survey of Finland, and the Swedish Museum of Natural History. K. Högdahl and T. Sunde are thanked for supervision during U–Pb data acquisition. The reading by C. Carson and the constructive reviews by J. Mattinson, an anonymous reviewer, and the editor led to a considerable improvement of the manuscript. This is Nordsim contribution #93 and GSC contribution 2003288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingen, B., Austrheim, H., Whitehouse, M.J. et al. Trace element signature and U–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contrib Mineral Petrol 147, 671–683 (2004). https://doi.org/10.1007/s00410-004-0585-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0585-z

Keywords

Navigation