Skip to main content
Log in

Precambrian mafic dyke swarms in the North China Craton and their geological implications

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

A map of major Precambrian mafic dyke swarms and related units in the North China Craton is compiled, and the features and geological implications of these swarms are demonstrated. The Archean dyke swarms are available to portray the early crustal growth and cratonization. The middle Paleoproterozoic (2200-1850 Ma) swarms and related magmatic series could constrain the tectonic evolution: They approve that the craton was amalgamated by two sub-cratons. The late Paleoproterozoic (1800-1600 Ma), Mesoproterozoic (1400-1200 Ma) and Neoproterozoic (1000-800 Ma) series swarms are important in paleogeographic reconstruction: they indicate that North China might have connected with some of the North European and North American cratons during Proterozoic. Dyke swarms are not only geological timescales and tectonic markers but also evolution indicators of lithospheric mantle: they imply a rejuvenation of the sub-continental lithospheric mantle of North China at 1780-1730 Ma. These swarms occurred with several rifts, including the Hengling (2200-1970 Ma), Xuwujia (1970-1880 Ma), Xiong’er (1800-1600 Ma), Yan-Liao (1730-1200 Ma), and Xu-Huai (1000-800 Ma). Among them, the Xuwujia rift was possibly continental arc associated; whereas the others were intra-continental. In addition, the Xiong’er and Xu-Huai rifts were possibly triple junctions along the present southern and southeastern margins of the Craton, respectively. Different tectonic settings of these rifts and dyke swarms would result in diversified series of ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarenga C J S, Botelho N F, Dardenne M A, et al. 2000. Magmatic and stratigraphic evolution of a Paleo/Mesoproterozoic syn-rift to post-rift basin: Example of the Araí Basin, Brazil. In: Proceedings of the 31st International Geological Congress. Rio de Janeiro

    Google Scholar 

  • Amelin Y V, Heaman L M, Verkhoglyad V M, et al. 1994. Geochronological constraints on the emplacement history of an anorthosite-rapakivi granite suite: U-Pb zircon and baddeleyite study of the Korosten complex, Ukraine. Contrib Mineral Petrol, 116: 411–419

    Google Scholar 

  • Ashwal L D. 1993. Anorthosites. London: Springer-Verlag. 422

    Google Scholar 

  • Bibikova E V, Kirnozova T I, Lazarev Y I, et al. 1990. U-Pb isotopic age of Karelian Vepsian (in Russian). Doklady AN SSSR, 310: 189–191

    Google Scholar 

  • Bispo-Santos F, D’Agrella-Filho M S, Janikian L, et al. 2014. Towards Columbia: Paleomagnetism of 1980-1960 Ma Surumuvolcanic rocks, Northern Amazonian Craton. Precambrian Res, 244: 123–138

    Google Scholar 

  • Bispo-Santos F, D’Agrella-Filho M S, Pacca I G, et al. 2008. Columbia revisited: Paleomagnetic results from the 1790 Ma Colider volcanics (SW Amazonian Craton, Brazil). Precambrian Res, 164: 40–49

    Google Scholar 

  • Bispo-Santos F, D’Agrella-Filho M S D, Trindade R I F, et al. 2012. Tectonic implications of the 1419 Ma Nova Guarita mafic intrusives paleo-magnetic pole (Amazonian Craton) on the longevity of Nuna. Precambrian Res, 196–197: 1–22

    Google Scholar 

  • Bleeker W, Ernst R. 2006. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski E, Mertanen S, Ramö T, et al., eds. Dyke Swarms—Time Markers of Crustal Evolution. Abingdon: Taylor & Francis Publisher. 3–26

    Google Scholar 

  • Bogdanova S V, Gintov O B, Kurlovich D M, et al. 2013. Late Paleoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotation during the assembly of supercontinent Columbia (Nuna). Lithos, 174: 196–216

    Google Scholar 

  • Bogdanova S V, Pashkevich I K, Buryanov V B, et al. 2004. The 1.80-1.74 Ga gabbro-anorthosite-rapakivi Korosten Pluton in the Ukrainian Shield: A 3-D geophysical reconstruction of deep structure. Tectonophysics, 381: 5–27

    Google Scholar 

  • Bryan S, Ernst R. 2008. Revised definition of large igneous provinces (LIPs). Earth-Sci Rev, 86: 175–202

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Anhui (BGMRA), 1985. Strata of Anhui (Precambrian part) (in Chinese). Hefei: Anhui Science and Technology Publishing House. 174

    Google Scholar 

  • Caxito F A, Dantas E L, Stevenson R, et al. 2014. Detrital zircon (U-Pb) and Sm-Nd isotope studies of the provenance and tectonic setting of basins related to collisional orogens: The case of the Rio Preto fold belt on the northwest São Francisco Craton margin, NE Brazil. Gondwana Res, 26: 741–754

    Google Scholar 

  • Chaves A O, Neves J M. 2005. Magmatism, rifting and sedimentation related to Late Paleoproterozoic mantle plume events of Central and Southeastern Brazil. J Geodyn, 39: 197–208

    Google Scholar 

  • Coffin M F, Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions and external consequences. Rev Geophys, 32: 1–36

    Google Scholar 

  • Campbell I H. 2001. Identification of ancient mantle plume. In: Ernst R E, Buchan K L, eds. Mantle Plume: Their Identification Through Time. Geol Soc Am Spec Paper, 352: 5–21

    Google Scholar 

  • Correia C T, Sinigoi S, Girardi V A V, et al. 2012. The growth of large mafic intrusions: Comparing Niquelândia and Ivrea igneous complexes. Lithos, 155: 167–182

    Google Scholar 

  • Courtillot V E, Renne P R. 2003. On the ages of flood basalt events. C R Geosci, 335: 113–140

    Google Scholar 

  • Cui M L, Zhang B L, Peng P, et al. 2010. Zircon/baddeleyite U-Pb dating for the Paleoproterozoic intermediate-acid intrusive rocks in Xiaoshan Mountains, west of Henan province and their constraints on the age of the Xiong’er volcanic province (in Chinese). Acta Petrol Sin, 26: 1541–1549

    Google Scholar 

  • Davis D W. 1982. Optimum linear regression and error estimation applied to U-Pb data. Can J Earth Sci, 19: 2141–2149

    Google Scholar 

  • Dong C Y, Ma M Z, Liu S J, et al. 2012. Middle Paleoproterozoic crustal extensional regime in the North China Craton: New evidence from SHRIMP zircon U-Pb dating and whole-rock geochemistry of meta-gabbro in the Anshan Gongchangling area (in Chinese). Acta Petrol Sin, 28: 2785–2792

    Google Scholar 

  • Drüppel K, Littmann S, Romer R L, et al. 2007. Petrology and isotopic geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene Intrusive Complex, NW Namibia. Precambrian Res, 156: 1–31

    Google Scholar 

  • Du L L, Yang C H, Guo J H, et al. 2010. The age of the base of the Paleoproterozoic Hutuo Group in the Wutai Mountains area, North China Craton: SHRIMP zircon U-Pb dating of basaltic andesite. Chin Sci Bull, 55: 1782–1789

    Google Scholar 

  • Du L L, Yang C H, Wang W, et al. 2011. The re-examination of the age and stratigraphic subdivision of the Hutuo Group in the Wutai Mountains area, North China Craton: Evidences from geology and zircon U-Pb geochronology (in Chinese). Acta Petrol Sin, 27: 1037–1055

    Google Scholar 

  • Elming S A, Shumlyanskyy L, Kravchenko S, et al. 2010. Proterozoic basic dykes in the Ukrainian Shield: A paleomagnetic, geochronologic and geochemical study—The accretion of the Ukrainian Shield to Fennoscandia. Precambrian Res, 178: 119–135

    Google Scholar 

  • Ernst R E, Grosfils E B, Mege D. 2001. Giant dyke swarms: Earth, Venus, and Mars. Annu Rev Earth Planet Sci, 29: 489–534

    Google Scholar 

  • Ernst R E, Buchan K L. 2001. Large mafic magmatic events through time and links to mantle plume heads. In: Ernst R E, Buchan K L, eds. Mantle Plumes: Their Identification Through Time. Geol Soc Am Spec Paper, 352: 483–575

    Google Scholar 

  • Ernst R E, Bleeker W, Söderlund U, et al. 2013a. Large igneous provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174: 1–14

    Google Scholar 

  • Ernst R E, Pereira E, Hamilton M A, et al. 2013b. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Res, 230: 103–118

    Google Scholar 

  • Evans D A D, Heaman L M, Trindade R I F, et al. 2010. Precise U-Pb baddeleyite ages from Neoproterozoic mafic dykes in Bahia, Brazil, and their paleomagnetic/paleogeographic implications. In: American Geophysical Union, Joint Assembly. Iguassu Falls. GP31E-07

    Google Scholar 

  • Fan H R, Hu F F, Chen F K, et al. 2006. Intrusive age of No. 1 carbonatite dyke from Bayan Obo REE-Nb-Fe deposit, Inner Mongolia: With answers to comment of Dr. Le Bas (in Chinese). Acta Petrol Sin, 22: 519–520

    Google Scholar 

  • Franssen L, André L. 1988. The Zadinian group (Late Proterozoic, Zaire) and its bearing on the origin of the West Congo orogenic belt. Precambrian Res, 38: 215–234

    Google Scholar 

  • Gao L Z, Zhang C H, Shi X Y, et al. 2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China (in Chinese). Geol Bull China, 26: 249–255

    Google Scholar 

  • Gao L, Zhang C, Yin C Y, et al. 2008a. SHRIMP zircon ages: Basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China Old Land (in Chinese). Acta Geoscie Sin, 29: 366–376

    Google Scholar 

  • Gao L Z, Zhang C H, Shi X Y, et al. 2008b. Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by zircon SHRIMP dating. Chin Sci Bull, 53: 2665–2671

    Google Scholar 

  • Geng Y S, Wan Y S, Shen Q H, et al. 2000. Chronological framework of the Early Precambrian important events in the Lvliang area, Shanxi Province (in Chinese). Acta Geol Sin, 74: 216–223

    Google Scholar 

  • Guo J H, Sun M, Chen F K, et al. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 24: 629–642

    Google Scholar 

  • Guo J H, Peng P, Jiao S J, et al. 2012. UHT sapphirine granulite metamorphism at 1 93-1 92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Res, 222–223: 124–142

    Google Scholar 

  • Guo S S, Li S G. 2009. SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton. Sci China Ser D-Earth Sci, 52: 1039–1045

    Google Scholar 

  • Halls H C. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geosci Can, 9: 145–154

    Google Scholar 

  • Halls H C, Fahrig W F. 1987. Mafic Dyke Swarms: A Collection of Papers Based on the Proceedings of an International Conference Held at Erindale College. Canada: Geological Association of Canada. 503

    Google Scholar 

  • Halls H C, Palmer H C. 1990. The tectonic relationship of two early Proterozoic dyke swarms to the Kapuskasing structural zone: A paleomagnetic and petrographic study. Can J Earth Sci, 27

    Google Scholar 

  • Halls H C, Campal N, Davis D W, et al. 2001. Magnetic studies and U-Pb geochronology of the Uruguayan dyke swarm, Rio de la Plata craton. Uruguay: Paleomagnetic and economic implications. J S Am Earth Sci, 14: 349–361

    Google Scholar 

  • Halls H C, Li J H, Davis D, et al. 2000. A precisely dated Proterozoic paleomagnetic pole form the North China Craton, and its relevance to paleocontinental construction. Geophys J Int, 143: 185–203

    Google Scholar 

  • Han B F, Zhang L, Wang Y M, et al. 2007. Enriched mantle source for Paleoproterozoic high Mg and low Ti-P mafic dykes in central part of the North China craton: Constraints from zircon Hf isotopic compositions (in Chinese). Acta Petrol Sin, 23: 277–284

    Google Scholar 

  • Hanski E, Mertanen S. Ramö T, et al. 2006. Dyke Swarms—Time Markers of Crustal Evolution. In: Proceedings of the fourth and fifth International Dyke Conference. London: Taylor & Francis Publisher. 273

    Google Scholar 

  • Hanski E J, Huhma H, Smol’kin V F, et al. 1990. The age of ferropicritic volcanites and comagmatic Ni-bearing intrusions at Pechenga, Kola Peninsula, USSR. Geol Surv Finl Bull, 62: 123–133

    Google Scholar 

  • He Y H, Zhao G C, Sun M, et al. 2009. SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton. Precambrian Res, 168: 213–222

    Google Scholar 

  • Hellström F A, Johansson Å, Larson S Å. 2004. Age and emplacement of late Sveconorwegian monzogabbroic dykes, SW Sweden. Precambrian Res, 128: 39–55

    Google Scholar 

  • Hooper P R, Rehacek J, Duncan R A, et al. 1993. The Basalts of Lesotho, Karoo Province, Southern Africa. In: American Geophysics Union Fall Meeting. 74: 553

    Google Scholar 

  • Hou G T, Li J H, Qian X L, et al. 2001a. The paleomagnetism and geological significance of Mesoproterozoic dyke swarms in the central North China Craton. Sci China Ser D-Earth Sci, 44: 185–192

    Google Scholar 

  • Hou G T, Li J H, Qian X L, 2001b. Geochemical characteristics and tectonic setting of Mesoproterozoic dyke swarms in northern Shanxi (in Chinese). Acta Petrol Sin, 17: 352–357

    Google Scholar 

  • Hou G T, Wang C C, Li J H, et al. 2006. Late Paleoproterozoic extension and a paleo-stress field reconstruction of the North China Craton. Tectonophysics, 422: 89–98

    Google Scholar 

  • Hou G T, Santosh M, Qian X L, et al. 2008a. Tectonic constraints on 1.3-1.2 Ga final breakup of Columbia supercontinent from a giant radiating dyke swarm. Gondwana Res, 14: 561–566

    Google Scholar 

  • Hou G T, Santosh M, Qian X L, et al. 2008b. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Res, 14: 395–409

    Google Scholar 

  • Hou K J, Li Y H, Gao J F, et al. 2014. Geochemistry and Si-O-Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation, Lvliang Group, Shanxi, China. Ore Geol Rev, 57: 288–298

    Google Scholar 

  • Hu B, Zhai M, Li T, et al. 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochrono-logical evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Res, 22: 828–842

    Google Scholar 

  • Jiang N, Guo J, Zhai M, 2011. Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China craton. J Asian Earth Sci, 42: 76–82

    Google Scholar 

  • Kröner A, Wilde S A, Li J H, et al. 2005. Age and evolution of a late Archean to early Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. J Asian Earth Sci, 24: 577–596

    Google Scholar 

  • Kröner A, Wilde S A, Zhao G C, et al. 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Paleoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Res, 146: 45–67

    Google Scholar 

  • Kullerud K, Skjerlie K P, Corfu F, et al. 2006. The 2.40 Ga Ringvassøy mafic dykes, West Troms Basement Complex, Norway: The concluding act of early Paleoproterozoic continental breakup. Precambrian Res, 150: 183–200

    Google Scholar 

  • Kusky T M, Li J H. 2003. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 22: 383–397

    Google Scholar 

  • Kusky T M, Li J H, Santosh M. 2007. The Paleoproterozoic North Hebei Orogen: North China Craton’s collisional suture with the Columbia supercontinent. Gondwana Res, 12: 4–28

    Google Scholar 

  • Le Bas M J, Yang X M, Taylor R N, et al. 2007. New evidence from a calcite-dolomite carbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China. Miner Petrol, 91: 287–287

    Google Scholar 

  • Li H K, Li H M, Lu S N. 1995. Grain zircon U-Pb age for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implication (in Chinese). Geochimica, 24: 43–48

    Google Scholar 

  • Li H K, Lu S N, Li H M, et al. 2009. Zircon and baddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China (in Chinese). Geol Bull China, 28: 1396–1404

    Google Scholar 

  • Li H K, Zhu S X, Xiang Z Q, et al. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton (in Chinese). Acta Petrol Sin, 26: 2131–2140

    Google Scholar 

  • Li H K, Lu S N, Su W B, et al. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. J Asian Earth Sci, 72: 216–227

    Google Scholar 

  • Li J H, Qian X L, Huang X N, et al. 2000. Tectonic framework of North China block and its cratonization in the Early Precambrian (in Chinese). Acta Petrol Sin, 16: 1–10

    Google Scholar 

  • Li S, Lin Y, Zhang X. 1984. A report on the age of the Changzhougou and Chuanlinggou Formations of the Changcheng System in the Yanshan Range (in Chinese). Precambrian Geol, 2: 129–134

    Google Scholar 

  • Li S Z, Zhao G C. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Res, 158: 1–16

    Google Scholar 

  • Li T S, Zhai M G, Peng P, et al. 2010. Ca. 2.5 billion year old coeval ultramaficmafic and syenitic dykes in Eastern Hebei: Implications for cratonization of the North China Craton. Precambrian Research 180: 143–155

    Google Scholar 

  • Li X H, Su L, Song B, et al. 2004. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. Chin Sci Bull, 49: 420–422

    Google Scholar 

  • Li Y, Peng P, Wang X P, et al. 2015. Nature of 1800-1600 Ma mafic dyke swarms in the North China Craton: Implications for the rejuvenation of the sub-continental lithospheric mantle. Precambrian Res, 257: 114–123

    Google Scholar 

  • Liu C H, Zhao G C, Sun M, et al. 2011. U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China orogen and tectonic implications. Gondwana Res, 20: 106–121

    Google Scholar 

  • Liu D Y, Wilde S, Wan Y S, et al. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am J Sci, 308: 200–231

    Google Scholar 

  • Liu S, Hu R, Gao S, et al. 2008. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constrains on their petrogenesis and geodynamic significance. Chem Geol, 255: 329–345

    Google Scholar 

  • Liu S, Hu R Z, Gao S, et al. 2012. U-Pb zircon age, geochemical and Sr-Nd isotopic data as constraints on the petrogenesis and emplacement time of the Precambrian mafic dyke swarms in the North China Craton (NCC). Lithos, 140-141: 38–52

    Google Scholar 

  • Liu S, Feng C X, Jahn B M, et al. 2013a. Geochemical, Sr-Nd isotopic, and zircon U-Pb geochronological constraints on the petrogenesis of Late Paleoproterozoic mafic dykes within the northern North China Craton, Shanxi Province, China. Precambrian Res, 236: 182–192

    Google Scholar 

  • Liu S, Feng C, Jahn B M, et al. 2013b. Zircon U-Pb age, geochemical, and Sr-Nd-Hf isotopic constraints on the origin of mafic dykes in the Shaanxi Province, North China Craton, China. Lithos, 175-176: 244–254

    Google Scholar 

  • Liu S W, Pan Y M, Xie Q L, et al. 2005. Geochemistry of the Paleoproterozoic Nanying granitic gneisses in the Fuping Complex: Implications for the tectonic evolution of the Central Zone, North China Craton. J Asian Earth Sci, 24: 643–658

    Google Scholar 

  • Liu S W, Li Q G, Liu C H, et al. 2009. Guandishan granitoids of the Paleoproterozoic Lvliang metamorphic complex in the Trans-North China Orogen: SHRIMP zircon ages, petrogenesis and tectonic implications. Acta Geol Sin, 83: 580–602

    Google Scholar 

  • Liu S W, Zhang J, Li Q G, et al. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lvliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Res, 222–223: 173–190

    Google Scholar 

  • Lu S N, Li H M. 1991. A precise U-Pb single zircon age determination for the volcanics of the Dahongyu Formation, Changcheng System in Jinxian (in Chinese). Bull Chin Acad Geol Sci, 22: 137–145

    Google Scholar 

  • Lu S N, Zhao G C, Wang H C, et al. 2008. Precambrian metamorphic basement and sedimentary cover of the North China craton: A review. Precambrian Res, 160: 77–93

    Google Scholar 

  • Lu X P, Wu F Y, Zhang Y B, et al. 2004. Emplacement age and tectonic setting of the Paleoproterozoic Liaoji granites in Tonghua area, southern Jilin Province (in Chinese). Acta Petrol Sin, 20: 381–392

    Google Scholar 

  • Lu X P, Wu F Y, Guo J H, et al. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Res, 146: 138–164

    Google Scholar 

  • Lubnina N V, Bogdanova S V, Shumlyyansky L V. 2009. The East European Craton in the Paleoproterozoic: New paleomagnetic data on magmatic complexes in the Ukrainian Shield (in Russian). Geofizika, 5: 56–64

    Google Scholar 

  • Ludwig K R. 2003. User’s Manual for Isoplot/EX Version 3 00. A Geochronological Toolkit for Microsoft Excel, Vol. 4. Berkeley Geochronol Center Spec Publ. 71

    Google Scholar 

  • Lv B, Zhai M G, Li T S, et al. 2011. Zircon U-Pb ages and geochemistry of the Qinglong volcano-sedimentary rock series in Eastern Hebei: Implication for ∼2500 Ma intra-continental rifting in the North China Craton. Precambrian Res, 208–211: 145–160

    Google Scholar 

  • Ma M Z, Wan Y S, Santosh M, et al. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Res, 22: 810–827

    Google Scholar 

  • Marshak S, Alkmim F F, Whittington A, et al. 2006. Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: A setting for reactivation of asymmetric crenulation cleavage. J Struct Geol, 28: 129–147

    Google Scholar 

  • Martin A P, Condon D J, Prave A R, et al. 2013. Dating the termination of the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event in the North Transfennoscandian Greenstone Belt. Precambrian Res, 224: 160–168

    Google Scholar 

  • Meng Q R, Wei H H, Qu Y Q, et al. 2011. Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo-to Mesoproterozoic transition. Gondwana Res, 20: 205–218

    Google Scholar 

  • Moraes R, Fuck A R, Pimentel M M, et al. 2006. The bimodal rift-related volcanosedimentary sequence in Central Brazil: Mesoproterozoic extension and Neoproterozoic metamorphism. J S Am Earth Sci, 20: 287–301

    Google Scholar 

  • Naqvai S M, Hussain S M. 1979. Geochemistry of meta-anorthosites from a greenstone belt in Karnataka, India. Can J Earth Scis, 16: 1254–1264

    Google Scholar 

  • Nilsson M, Wikman H. 1997. U-Pb zircon ages of two Småland dyke porphyries at Påskallavik and Alsterbro, southeastern Sweden. In: Lundqvist T, ed. Radiometric Dating Results 3. Division of Bedrock Geology, Geological Survey of Sweden, 830: 31–40

    Google Scholar 

  • Norcross C, Davis D W, Spooner E T C, et al. 2000. U-Pb and Pb-Pb age constraints on Paleoproterozoic magmatism, deformation and gold mineralization in the Omai area, Guyana Shield. Precambrian Res, 10: 69–86

    Google Scholar 

  • Oberthuer T, Davis D W, Blenkinsop T G, et al. 2002. Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe-constraints on crustal evolution and metallogenesis of the Zimbabwe Craton. Precambrian Res, 113: 293–306

    Google Scholar 

  • O’Brien P J, Walte N, Li J H. 2005. The petrology of two distinct granulite types in the Hengshan Mts, China, and tectonic implications. J Asian Earth Sci, 24: 615–627

    Google Scholar 

  • Oliveria E P, Windley B F, McNaughton N J, et al. 2004. Contrasting copper and chromium metallogenic evolution of terranes in the Paleoproterozoic Itabuna-Salvador-Curaçá orogen, São Francisco craton, Brazil: New zircon (SHRIMP) and Sm-Nd (model) ages and their significance for orogen-parallel escape tectonics. Precambrian Res, 128: 143–165

    Google Scholar 

  • Oliveira E P, McNaughton N J, Armstrong R. 2010. Mesoarchean to Paleoproterozoic growth of the northern segment of the Itabuna-Salvador-Curaçá Orogen, São Francisco Craton, Brazil. Special Publication. In: Kusky T M, Zhai M G, Xiao W, eds. The Evolving Continents: Understanding Processes of Continental Growth. Geol Soc London Spec Publ, 338: 263–286

    Google Scholar 

  • Page R W. 1988. Geochronology of Early to Middle Proterozoic fold belts in northern Australia: A review. Precambrian Res, 40–41: 1–19

    Google Scholar 

  • Page R W, Hoatson D M. 2000. Geochronology of mafic-ultramafic intrusions. In: Hoatson D M, Blake D H, eds. Geology and Economic Potential of the Paleoproterozoic Layered Mafic-ultramafic Intrusions in the East Kimberley, Western Australia. Australian Geological Survey Organisation, Canberra, 246: 163–172

    Google Scholar 

  • Parker A J, Rickwood P C, Baillie P W, et al. 1987. Mafic dyke swarms of Australia. In: Halls H C, Fahrig W F, eds. Mafic dyke swarms. Geol Ass Can Spec Pap, 34: 401–417

    Google Scholar 

  • Parker A J, Rickwood P C, Tucker D H. 1990. Mafic dykes and emplacement mechanisms. In: Proceedings of the Second International Dyke Conference. Adelaide. 541

    Google Scholar 

  • Peng P, Zhai M G, Zhang H F, et al. 2004. Geochemistry and Geological Significance of the 1.8 Ga Mafic Dyke Swarms in the North China Craton: An Example from the Juncture of Shanxi, Hebei and Inner Mongolia (in Chinese). Acta Petrol Sin, 20: 439–456

    Google Scholar 

  • Peng P, Zhai M G, Zhang H F, et al. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes. Int Geol Rev, 47: 492–508

    Google Scholar 

  • Peng P, Zhai M G, Guo J H. 2006. 1.80-1.75 Ga mafic dyke swarms in the central North China craton: Implications for a plume-related break-up event. In: Hanski E, Mertanen S, Rämö T, et al., eds. Dyke Swarms-Time Markers of Crustal Evolution. London: Taylor & Francis. 99–112

    Google Scholar 

  • Peng P, Zhai M G, Guo J H, et al. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton. Gondwana Res, 12: 29–46

    Google Scholar 

  • Peng P, Zhai M G, Ernst R, et al. 2008. A 1 78 Ga large igneous province in the North China craton: The Xiong’er Volcanic Province and the North China dyke swarm. Lithos, 101: 260–280

    Google Scholar 

  • Peng P. 2010. Reconstruction and interpretation of giant mafic dyke swarms: A case study of 1.78 Ga magmatism in the North China craton. In: Kusky T, Zhai M G, Xiao W J, eds. The Evolving Continents: Understanding Processes of Continental Growth. Geol Soc London Spec Publ, 338: 163–178

    Google Scholar 

  • Peng P, Guo J H, Zhai M G, et al. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Res, 183: 635–659

    Google Scholar 

  • Peng P, Bleeker W, Ernst R E, et al. 2011a. U-Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127: 210–221

    Google Scholar 

  • Peng P, Zhai M, Li Q, et al. 2011b. Neoproterozoic (∼900 Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Res 20: 243–254

    Google Scholar 

  • Peng P, Guo J, Windley B F, et al. 2011c. Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction. Precambrian Res, 187: 165–180

    Google Scholar 

  • Peng P, Guo J, Zhai M, et al. 2012a. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics. Lithos, 148: 27–44

    Google Scholar 

  • Peng P, Li Y, Liu F, et al. 2012b. Geological relation of Late Archean litholoigc units in Northeast Hebei, North China Craton: implication for building of early continental crust (in Chinese). Acta Petrol Sin, 28: 3531–3544

    Google Scholar 

  • Peng P, Guo J, Windley B F, et al. 2012c. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction. Precambrian Res, 222–223: 107–123

    Google Scholar 

  • Peng P, Liu F, Zhai M, et al. 2012d. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System. Chin Sci Bull 57: 105–110.

    Google Scholar 

  • Peng P, Wang X, Windley B F, et al. 2014. Spatial distribution of ∼1950-1800 Ma metamorphic events in the North China Craton: Implications for tectonic subdivision of the craton. Lithos, 202–203: 250–266

    Google Scholar 

  • Peng Q M, Palmer M R, 2002. The Paleoproterozoic Mg and Mg-Fe Borate Deposits of Liaoning and Jilin Provinces, Northeast China. Econ Geol, 97: 93–108

    Google Scholar 

  • Peng R M, Zhai Y S. 2004. The characteristics of hydrothermal exhalative mineralization of the Langshan-Zha’ertai belt, Inner Mongolia, China (in Chinese). Earth Sci Front, 11: 258–268

    Google Scholar 

  • Peng R M, Zhai Y S, Wang J P, et al. 2010. Discovery of Neoproterozoic acid volcanic rock in the western section of Langshan, Inner Mongolia, and its geological significance (in Chinese). Chin Sci Bull, 55: 2611–2620

    Google Scholar 

  • Peng T P, Wilde S A, Fan W M, et al. 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Res, 235: 190–207

    Google Scholar 

  • Piper J D A, Zhang J S, Huang B C, et al. 2011. Paleomagnetism of Precambrian dyke swarms in the North China Shield: The ∼1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times. J Asian Earth Sci, 41: 504–524

    Google Scholar 

  • Pirajno F. 2007. Mantle plumes, associated intraplate tectono-magmatic processes and ore systems. Episodes, 30: 6–19

    Google Scholar 

  • Pisarevsky S A, Bylund G. 2010. Paleomagnetism of 1780-1770 Ma mafic and composite intrusions of Småland (Sweden): Implications for the Mesoproterozoic supercontinent. Am J Sci, 310: 1168–1186

    Google Scholar 

  • Pisarevsky S A, Elming S Å, Pesonen L J, et al. 2014. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Res, 244: 207–225

    Google Scholar 

  • Polat A, Li J, Fryer B, et al. 2006. Geochemical characteristics of the Neoarchean (2800-2700 Ma) Taishan greenstone belt, North China Craton: evidence for plume-craton interaction. Chem Geol, 230: 60–87

    Google Scholar 

  • Polat A, Fryer B J, Appel P W U, et al. 2011. Geochemistry of anorthositic differentiated sills in the Archean (∼2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos, 123: 50–72

    Google Scholar 

  • Puchkov V N, Bogdanova S V, Ernst R E, et al. 2013. The ca. 1380 Ma Mashak igneous event of the Southern Urals. Lithos, 174: 109–124

    Google Scholar 

  • Rämö O T, Haapala I, Vaasjoki M, et al. 1995. 1700 Ma Shachang complex, northeast China: Proterozoic rapakivi granite not associated with Paleoproterozoic orogenic crust. Geology, 23: 815–818

    Google Scholar 

  • Reis N J, Teixeira W, Hamilton M A, et al. 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos, 174: 175–195

    Google Scholar 

  • Santos J O S, Hartmann L A, McNaughton N J, et al. 2002. Timing of mafic magmatism in the Tapajos Province (Brazil) and implications for the evolution of the Amazon craton: Evidence from baddeleyite and zircon U-Pb SHRIMP geochronology. J S Am Earth Sci, 15: 409–429

    Google Scholar 

  • Santosh M, Wilde S A, Li J H. 2007. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Res, 159: 178–196

    Google Scholar 

  • Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res, 178: 149–167

    Google Scholar 

  • Santosh M, Liu S J, Tsunogae T, et al. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Res, 222–223: 77–106

    Google Scholar 

  • Sharkov E V, Smolkin V F. 1998. Paleoproterozoic layered intrusions of the Russian part of the Fennoscandian Shield: A review. Transactions, Section B (Applied Earth Science), Institution of Mining and Metallurgy, 107: B23–38

    Google Scholar 

  • Sheth H C. 2007. “Large Igneous Provinces (LIPs)”: Definition, recommended terminology, and a hierarchical classification. Earth-Sci Rev, 85: 117–124

    Google Scholar 

  • Shumlyanskyy L V, Belousova O A, Elming S A. 2008. New data on isotopic age of the Paleoproterozoic gabbro-dolerites of the North-Western region of the Ukrainian Shield. Mineral J, 30: 58–69

    Google Scholar 

  • Shumlyanskyy L, Billström K, Hawkesworth C, et al. 2012. U-Pb age and Hf isotope compositions of zircons from the north-western region of the Ukrainian shield: mantle melting in response to post-collision extension. Terra Nova, 24: 373–379

    Google Scholar 

  • Silva A M, Chemale J R F, Kuyumjian R M, et al. 1995. Mafic dyke swarms of Quadrilátero Ferrífero and Southern Espinhaço, Minas Gerais, Brazil. Revista Brasileira de Geociências, 25: 124–137

    Google Scholar 

  • Söderlund U, Johansson L. 2002. A simple way to extract baddeleyite (ZrO2). Geochem Geophys Geosyst, 3: 1014, doi: 10.1029/2001GC-000212

    Google Scholar 

  • Söderlund U, Isachsen C E, Bylund G, et al. 2005. U-Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contrib Mineral Petrol, 150: 174–194

    Google Scholar 

  • Söderlund U, Hofmann A, Klausen M B, et al. 2010. Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U-Pb dating of regional dolerite dyke swarms and sill complexes. Precambrian Res, 183: 388–398

    Google Scholar 

  • Srivastava K R, Singh R K. 2004. Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton: evidence for mantle metasomatism. J Asian Earth Sci, 23: 373–389

    Google Scholar 

  • Srivastava R K. 2010. Dyke Swarms: Keys for Geodynamic Interpretation. In: Proceedings of the Sixth International Dyke Conference. Berlin: Springer. 636

    Google Scholar 

  • Su W B, Zhang S H, Huff W D, et al. 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton. Gondwana Res, 14: 543–553

    Google Scholar 

  • Su W B, Li H K, Warren D H, et al. 2010. Zircon SHRIMP U-Pb ages of tuff in the Tieling Formation and their geological significance. Chin Sci Bull, 55: 3312–3323

    Google Scholar 

  • Suita M T F, Hartmann L A, Kämö S L. 1994. The nature of the Barro Alto layered mafic-ultramafic complex and a discussion on the role of the Brasiliano and the Uruaçuano Cycles in Goiás, Central Brazil. In: Proceedings of the ISUM—International Symposium on Physics and Chemistry of the Upper Mantle. São Paulo (expanded abstracts): 82–84

    Google Scholar 

  • Sun D Z, Hu W X. 1993. Precambrian Chronotectonic Framework and Chronological Crustal Structure of Zhongtiao Mt. (in Chinese). Beijing: Geological Publication House. 77–117

    Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts implications for mantle composition and process. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc London Spec Publ, 42: 313–354

    Google Scholar 

  • Sun S S. 1997. Chemical and isotopic features of Paleoproterozoic mafic igneous rocks of Australia: Implications for tectonic processes. In: Rutland R W R, Drummond B J, eds. Paleoproterozoic Tectonics and Metallogenesis: Comparative Analysis of Parts of the Australian and Fennoscandian Shields. Australian Geological Survey Organization Record, 44: 119–122

    Google Scholar 

  • Tack L, Wingate M T D, Liégeois J P, et al. 2001. Early Neoproterozoic magmatism (1000-910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): Onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Res, 110: 277–306

    Google Scholar 

  • Teixeira W, D’Agrella-Filho M S, Hamilton M A, et al. 2013. (ID-TIMS) baddeleyite ages and paleomagnetism of 1 79 and 1 59 Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent. Lithos, 174: 157–174

    Google Scholar 

  • Trap P, Faure M, Lin W, et al. 2007. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: Implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Res, 156: 85–106

    Google Scholar 

  • Trap P, Faure M, Lin W, et al. 2011. Syn-collisional channel flow and exhumation of Paleoproterozoic high pressure rocks in the Trans-North China Orogen: The critical role of partial-melting and orogenic bending. Gondwana Res, 20: 498–515

    Google Scholar 

  • Trap P, Faure M, Lin W, et al. 2012. Paleoproterozoic tectonic evolution of the Trans-North China Orogen: Toward a comprehensive model. Precambrian Res, 222–223: 191–211

    Google Scholar 

  • Turpin L, Maruejol P, Cuney M. 1988. U-Pb, Rb-Sr and Sm-Nd chronology of granitic basement, hydrothermal albitites and uranium mineralization (Lagoa Real, South Bahia, Brazil). Contrib Mineral Petrol, 98: 139–147

    Google Scholar 

  • Vuollo J, Huhma H. 2005. Paleoproterozoic mafic dykes in NE Finland. In: Lehtinen M, Nurmi P A, Rämö O T, eds. Precambrian Geology of Finland-Key to the Evolution of the Fennoscandian Shield. Amsterdam: Elsevier. 195–236

    Google Scholar 

  • Wan Y S, Wilde S, Liu D Y, et al. 2006. Further evidence for ∼1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Res, 9: 189–197

    Google Scholar 

  • Wan Y S, Liu D Y, Xu Z Y, et al. 2008. Paleoproterozoic crustally derived carbonate-rich magmatic rocks from the Daqingshan area, North China Craton: Geological, petrographical, geochronological and geochemical (Hf, Nd, O and C) evidence. Am J Sci, 308: 351–378

    Google Scholar 

  • Wan Y S, Xu Z Y, Dong C Y, et al. 2013. Episodic Paleoproterozoic (∼2.45, ∼1.95 and ∼1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Res, 224: 71–93

    Google Scholar 

  • Wang J, Wu Y B, Gao S, et al. 2010. Zircon U-Pb and trace element data from rocks of the Huai’an Complex: New insights into the late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton. Precambrian Res, 178: 59–71

    Google Scholar 

  • Wang K Y, Wilde S A, 2002. Precise SHRIMP U-Pb ages of Dawaliang granite in Wutaishan area, Shanxi Province (in Chinese). Acta Petrol Mineral, 21: 407–411

    Google Scholar 

  • Wang Q H, Yang D B, Xu W L, 2012. Neoproterozoic basic magmatism in the southeast margin of North China Craton: Evidence from whole-rock geochemistry, U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Sci China Earth Sci, 55: 1416–1479

    Google Scholar 

  • Wang W, Liu S, Bai X, et al. 2013a. Geochemistry and zircon U-Pb-Hf isotopes of the late Paleoproterozoic Jianping diorite-monzonite-syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos, 162: 175–194

    Google Scholar 

  • Wang W, Yang E X, Zhai M G, et al. 2013b. Geochemistry of ∼2.7 Ga basalts from Taishan area: Constraints on the evolution of early Neoarchean granite-greenstone belt in western Shandong Province, China. Precambrian Res, 224: 94–109

    Google Scholar 

  • Wang X L, Jiang S Y, Bai B Z. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong’er Group, southern margin of the North China Craton. Precambrian Res, 182: 204–216

    Google Scholar 

  • Wang X L, Jiang S Y, Dai B Z, et al. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca.830 Ma) gabbros on the southern margin of the North China Craton. Precambrian Res, 190: 35–47

    Google Scholar 

  • Wang Y J, Fan W M, Zhang Y H, et al. 2004. Geochemical, 40Ar-39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Res, 135: 55–77

    Google Scholar 

  • Wang Y J, Zhao G C, Fan W M, et al. 2007. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: Implications for back-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Res, 154: 107–124

    Google Scholar 

  • Wang Y J, Zhao G C, Cawood P A, et al. 2008. Geochemistry of Paleoproterozoic (∼1770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications. J Asian Earth Sci, 33: 61–77

    Google Scholar 

  • Wang Z H, Wilde S, Wan J L, 2010. Tectonic setting and significance of 2.3-2.1 Ga magmatic events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area. Precambrian Res, 178: 27–42

    Google Scholar 

  • White R S. 1992. Magmatism during and after continental break-up. In: Storey B C, Alabaster T, Pankhurst R J, eds. Magmatism and Causes of Continental Break-up. Geol Soc Spec Publ, 68: 1–16

    Google Scholar 

  • Wilde S A. 1998. SHRIMP U-Pb zircon dating of granites and gneisses in the Taihangshan-Wutaishan area: Implications for the timing of crustal growth in the North China Craton. Chin Sci Bull, 43: 144

    Google Scholar 

  • Wilde S A, Zhao G C, Sun M, 2002. Development of the North China Craton during the Late Archean and its final amalgamation at 1 8 Ga: Some speculation on its position within a global Paleoproterozoic Supercontinent. Gondwana Res, 5: 85–94

    Google Scholar 

  • Wilde S A, Zhao G C, Wang K Y, et al. 2003. SHRIMP zircon U-Pb age of the Hutuo Group in Wutai Mts: New evidence for the Paleoproterozoic amalgamation of the North China Craton. Chin Sci Bull, 48: 2180–2186

    Google Scholar 

  • Windley B F. 1996. The Evolving Continents. London: John Wiley & Sons. 317–465

    Google Scholar 

  • Wu F Y, Han R H, Yang J H, et al. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chem Geol, 238: 232–248

    Google Scholar 

  • Wu F Y, Zhang Y B, Yang J H, et al. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Res, 167: 339–362

    Google Scholar 

  • Xiang Z, Li H, Lu S, Zhou H, et al. 2012. Emplacement age of the gabbro-diabase dike in the Hongmen scenic region of Mount Tai, Shandong Province, North China: Baddeleyite U-Pb precise dating (in Chinese). Acta Petrol Sin, 28: 2831–2842

    Google Scholar 

  • Xu J W, Zhu G. 1995. Discussion on tectonic models for the Tan-Lu fault zone, Eastern China (in Chinese). J Geol Mineral Resour N China, 10: 121–133

    Google Scholar 

  • Xu Y H, Zhao T P, Peng P, et al. 2007. Geochemical characteristics and geological significance of the Paleoproterozoic volcanic rocks from the Xiaoliangling Formation in the Lvliang area, Shanxi Province (in Chinese). Acta Petrol Sin, 23: 1123–1132

    Google Scholar 

  • Yakubchuk A. 2010. Restoring the supercontinent Columbia and tracing its fragments after its breakup: A new configuration and a Super-Horde hypothesis. J Geodyn, 50: 166–175

    Google Scholar 

  • Yang C H, Du L L, Ren L D, et al. 2011. The age and petrogenesis of the Xuting granite in the Zanhuang Complex, Hebei Province: Constraints on the structural evolution of the Trans-North China Orogen, North China Craton (in Chinese). Acta Petrol Sin, 27: 1003–1016

    Google Scholar 

  • Yang D B, Xu W L, Pei F P, et al. 2009. Petrogenesis of the Paleoproterozoic K-feldspar granites in Bengbu Uplift: Constraints from petrogeochemistry, zircon U-Pb dating and Hf isotope (in Chinese). Earth Sci—J China Uni Geosci, 34: 148–164

    Google Scholar 

  • Yang J, Wu F, Liu X. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China (in Chinese). Acta Petrol Sin, 21: 1633–1644

    Google Scholar 

  • Yang K F, Fan H R, Santosh M, et al. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements. Ore Geol Rev, 40: 122–131

    Google Scholar 

  • Yu J H, Wang D Z, Wang C Y, et al. 1997. Ages of the Lvliang Group and its main metamorphism in the Lvliang Mountains, Shanxi: Evidence from single-grain zircon U-Pb ages (in Chinese). Geol Rev, 43: 403–408

    Google Scholar 

  • Yutkina E V, Kononova V A, Tsymbal S N, et al. 2005. Isotopic-geochemical specialization of mantle sources of kimberlites in the Kirovograd Complex (Ukrainian Shield) (in Russian). Doklady Russian Acad Sci, 402: 87–91

    Google Scholar 

  • Zhai M G, Guo J H, Yan Y H, et al. 1993. The discovery of high-pressure basic granulite in the Archean North China Craton and preliminary study. Sci China Ser B-Earth Sci, 36: 1402–1408

    Google Scholar 

  • Zhai M G, Bian A G, Zhao T P. 2000. Amalgamation of the supercontinental of the North China craton and its break up during late-middle Proterozoic. Sci China Ser D-Earth Sci, 43(suppl): 219–232

    Google Scholar 

  • Zhai M G, Shao J A, Hao J, et al. 2003. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia. Gondwana Res, 6: 171–183

    Google Scholar 

  • Zhai M G, Peng P. 2007. Paleoproterozoic events in the North China Craton (in Chinese). Acta Petrol Sin, 23: 2665–2682

    Google Scholar 

  • Zhai M G, Santosh M. 2011. The early Precambrian odyssey of North China Craton: A synoptic overview. Gondwana Res, 20: 6–25

    Google Scholar 

  • Zhang J, Zhao G C, Li S Z, et al. 2007. Deformation history of the Hengshan Complex: Implications for the tectonic evolution of the Trans-North China Orogen. J Struct Geol 29, 933–949

    Google Scholar 

  • Zhang J, Zhao G C, Li S Z, et al. 2012. Structural pattern of the Wutai Complex and its constraints on the tectonic framework of the Trans-North China Orogen. Precambrian Res, 222–223: 212–229

    Google Scholar 

  • Zhang J S, Li Y, Huang X N. 2007. Paleoproterozoic crust-scale trans-tensional shear, detachment and in sialic mobile belts in North China: Geologic and tectonic implications for the NE-striking linear aeromagnetic anomaly (in Chinese). Chin J Geol, 42: 267–302

    Google Scholar 

  • Zhang S H, Liu S W, Zhao Y, et al. 2007. The 1.75-1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Res, 155: 287–312

    Google Scholar 

  • Zhang S H, Zhao Y, Yang Z Y, et al. 2009. The 1.35 Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth Planet Sci Lett, 288: 588–600

    Google Scholar 

  • Zhang S H, Zhao Y, Santosh M. 2012a. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Res, 222–223: 339–367

    Google Scholar 

  • Zhang S H, Li Z X, Evans D A D, et al. 2012b. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planet Sci Lett, 353–354: 145–155

    Google Scholar 

  • Zhang Y F, Liu J T, Xiao R G, et al. 2010. The hyalotourmalites of Houxianyu borate deposit in eastern Liaoning: Zircon features and SHRIMP dating (in Chinese). Earth Sci—J China Univ Geosci, 35: 985–999

    Google Scholar 

  • Zhang Z Q, Tang S H, Yuan Z X, et al. 2001. The Sm-Nd and Rb-Sr isotopic systems of the dolomites in the Bayan Obo ore deposit, Inner Mongolia, China (in Chinese). Acta Petrol Sin, 17: 637–642

    Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, et al. 1998. Thermal evolution of the Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 40: 706–721

    Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, et al. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Google Scholar 

  • Zhao G C, Sun M, Wilde S A, 2002a. Review of global 2 1-1 8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Sci Rev, 59: 125–162

    Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, et al. 2002b. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. Am J Sci, 302: 191–226

    Google Scholar 

  • Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177–202

    Google Scholar 

  • Zhao G C, Cao L, Wilde S A, et al. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth Planet Sci Lett, 251: 365–379

    Google Scholar 

  • Zhao G C, Wilde S A, Sun M, et al. 2008a, SHRIMP U-Pb zircon ages of granitoid rocks in the Lvliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Res, 160: 213–226

    Google Scholar 

  • Zhao G C, Wilde S A, Sun M, et al. 2008b. SHRIMP U-Pb zircon geochronology of the Huai’an Complex: Constrains on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. Am J Sci, 308, 270–303

    Google Scholar 

  • Zhao G C, He Y H, Sun M. 2009. Xiong’er volcanic belt in the North China Craton: Implications for the outward accretion of the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Res, 16: 170–181

    Google Scholar 

  • Zhao G C, Cawood P A, Li S Z, et al. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res, 222–223: 55–76

    Google Scholar 

  • Zhao G C, Zhai M G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res, 23: 1207–1240

    Google Scholar 

  • Zhao R F, Guo J H, Peng P, et al. 2011. 2.1 Ga crustal remelting event in Hengshan Complex: Evidence from zircon U-Pb dating and Hf-Nd isotopic study on potassic granites (in Chinese). Acta Petrol Sin, 27: 1607–1623

    Google Scholar 

  • Zhao T P, Zhou M F, Zhai M G, et al. 2002. Paleoproterozoic rift-related volcanism of the Xiong’er group, North China Craton: Implications for the breakup of Columbia: Int Geol Rev, 44: 336–351

    Google Scholar 

  • Zhao T P, Zhai M G, Xia B, et al. 2004a. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China craton. Chin Sci Bull, 49: 2495–2502

    Google Scholar 

  • Zhao T P, Chen F K, Zhai M G, et al. 2004b. Single zircon U-Pb ages and their geological significance of the Damiao anorthosite complex, Hebei Province, China (in Chinese). Acta Petrol Sin, 20: 685–690

    Google Scholar 

  • Zhao T P, Wand J P, Zhang Z H. 2005. Proterozoic Geology of Mt. Wangwushan and Adjacent Areas, China (in Chinese). Beijing: China Dadi Publishing House. 140

    Google Scholar 

  • Zhao T P, Chen W, Zhou M F. 2009. Geochemical and Nd-Hf isotopic constraints on the origin of the ∼1 74 Ga Damiao anorthosite complex, North China Craton. Lithos, 113: 673–690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Sci. China Earth Sci. 58, 649–675 (2015). https://doi.org/10.1007/s11430-014-5026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-5026-x

Keywords

Navigation