Skip to main content
Log in

An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The eight datasets of the summer (June–August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology, interannual variability and linear trend during 1980–2006. These data sets include five reanalyses (National Center for Environmental Prediction reanalysis, NCEPR1 and NCEPR2, NCEP climate forecast system reanalysis, CFSR, Japanese 25-year reanalysis, JRA, and European Centre for Medium Range Weather Forecasts reanalysis, ERA40), two land surface model outputs (Noah model data of Global Land Data Assimilation System version 2, G2_Noah, and Simple Biosphere version 2 output by Yang et al., YSiB2), and estimated SH based on China Meteorological Administration (CMA) station observations, ObCh. The results suggest that the summer SH on the TP differs from one dataset to another due to different inputs and calculations. Climatologically, the ERA40 and JRA distribute rather uniformly while the other six products show similar regional disparities, that is, larger in the west than in the east and stronger in the north and the south than in the middle of the plateau. The mean magnitude of the SH averaged over the 76 stations above the TP varies considerably among each dataset with the difference of more than 20 W m−2 between the maximum (G2_Noah) and minimum (ObCh). Nevertheless, they are consistent in the interannual variability and mostly show a significant decreasing trend corresponding to the weakening surface wind speed, in spite of the distinct trend for the ground-air temperature difference among the different data sets. These two consistencies indicate the particular availability of the SH products, which is helpful to the relevant climate dynamics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu G X, Liu Y M, Liu X, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer (in Chinese). Chin J Atmos Sci, 2005, 29: 47–56

    Google Scholar 

  2. Li W P, Wu G X, Liu Y M, et al. How the surface processes over the Tibetan Plateau affect the summertime Tibetan anticyclone-numerical experiments (in Chinese). Chin J Atmos Sci, 2001, 25:809–816

    Google Scholar 

  3. Hu J L, Zhu Q G. Numerical experiments with effects of sensible heating of the Tibetan Plateau on July atmospheric general circulation and summer monsoon in Aisia (in Chinese). J Tropical Meteorol, 1993, 9: 78–84

    Google Scholar 

  4. Zhu Q G, Guan Z Y. Numerical study of influence of Tibetan sensible heating abnormality on summer Asian monsoon LFO (in Chinese). J Nanjing Inst Meteorol, 1997, 20: 186–192

    Google Scholar 

  5. Duan A M, Liu Y M, Wu G X. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer. Sci China Ser D-Earth Sci, 2003, 48: 250–257

    Article  Google Scholar 

  6. Wu G X, Liu X, Zhang Q, et al. Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau (in Chinese). Clim Environ Res, 2002, 7: 184–201

    Google Scholar 

  7. Zuo Z, Zhang R, Zhao P. The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer. Clim Dyn, 2010, 36: 1207–1219

    Article  Google Scholar 

  8. Cressman G P. Improved terrain effects in barotropic forecasts. Mon Weather Rev, 1960, 88: 327–342

    Article  Google Scholar 

  9. Ye D Z, Gao Y X, Zhou M Y, et al. The Meteorology of Qinghai-Xizang (Tibet) Plateau (in Chinese). Beijing: Science Press. 1979. 278

    Google Scholar 

  10. Chen W L, Wong D M. A preliminary study on the computational method of 10-day mean sensible heat and latent heat on the Tibetan Plateau. Collected Works of the Qinghai-Xizang Plateau Meteorological Experiment (Series 2) (in Chinese). Beijing: Science Press, 1984. 35–45

    Google Scholar 

  11. Chen L, Reiter E R, Feng Z. The atmospheric heat source over the Tibetan Plateau: May-August 1979. Mon Weather Rev, 1985, 113: 1771–1790

    Article  Google Scholar 

  12. Zhang J J, Zhu B Z, Zhu F K. Advances in the Qinghai-Xizang Plateau Meteorology-The Qinghai-Xizang Plateau Meteorological Experiment (1979) and Research (in Chinese). Beijing: Science Press, 1988. 268

    Google Scholar 

  13. Yang K, Qin J, Guo X, et al. Method development for estimating sensible heat flux over the Tibetan Plateau from CMA data. J Appl Meteorol Climatol, 2009, 48: 2474–2486

    Article  Google Scholar 

  14. Yang K, Guo X F, Wu B Y. Recent trends in surface sensible heat flux on the Tibetan Plateau. Sci China Earth Sci, 2010, 54: 19–28

    Article  Google Scholar 

  15. Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc, 1996, 77: 437–471

    Article  Google Scholar 

  16. Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-II Reanalysis (R-2). Bull Amer Meteorol Soc, 2002, 83: 1631–1643

    Article  Google Scholar 

  17. Wei L, Li D L. Evaluation of NCEP/DOE surface flux data over Qinghai-Xizang Plateau (in Chinese). Plateau Meteor, 2003, 22: 478–487

    Google Scholar 

  18. Su Z X, Lv S H, Luo S W. The examinations and analysis of NCEP/NCAR 40 years global reanalysis data in China (in Chinese). Plateau Meteor, 1999, 18: 209–218

    Google Scholar 

  19. Uppala S M, Kollberg P W, Simmons A J, et al. The ERA-40 re-analysis. Q J R Meteorol Soc, 2005, 131: 2961–3012

    Article  Google Scholar 

  20. Li C, Zhang T J, Chen J. Climatic change of Qinghai-Xizang Plateau region in recent 40-year reanalysis and surface observation data -Contrast of observational data and NCEP, ECMWF surface air temperature and precipitation (in Chinese). Plateau Meteor, 2004, 23(Suppl): 97–103

    Google Scholar 

  21. Frauenfeld O W. Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J Geophys Res, 2005, 110: D02101

    Article  Google Scholar 

  22. Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis. Bull Amer Meteorol Soc, 2010, 91: 1015–1057

    Article  Google Scholar 

  23. Onogi K, Tsutsui J, Koide H, et al. The JRA-25 reanalysis. J Meteorol Soc Jpn, 2007, 85: 369–432

    Article  Google Scholar 

  24. Ek M, Mitchell K, Lin Y, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res, 2003, 108: 8851

    Article  Google Scholar 

  25. Peters-Lidard C, Houser P, Tian Y, et al. High-performance Earth system modeling with NASA/GSFC’s Land Information System. Inn Syst Software Eng, 2007, 3: 157–165

    Article  Google Scholar 

  26. Rodell M, Houser P, Jambor U, et al. The global land data assimilation system. Bull Amer Meteorol Soc, 2004, 85: 381–394

    Article  Google Scholar 

  27. Yang K, Guo X, He J, et al. On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J Clim, 2011, 24: 1525–1541

    Article  Google Scholar 

  28. Yang K, Chen Y, Qin J. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci, 2009, 13: 687–701

    Article  Google Scholar 

  29. Sellers P, Randall D, Collatz G, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Clim, 1996, 9: 676–705

    Article  Google Scholar 

  30. Sheffield J, Goteti G, Wood E F. Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J Clim, 2006, 19: 3088–3111

    Article  Google Scholar 

  31. Monin A, Obukhov A. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst, 1954, 24: 163–187

    Google Scholar 

  32. Chen F, Janji Z, Mitchell K. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound-Layer Meteor, 1997, 85: 391–421

    Article  Google Scholar 

  33. Louis J F. A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteor, 1979, 17: 187–202

    Article  Google Scholar 

  34. Long P J. Derivation and Suggested Method of Application of Simplified Relations for Surface Fluxes in the Medium-Range Forecast Model: Unstable Case. Office Note 356, US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1990, 53

  35. Long P J. An Economical and Compatible Scheme for Parameterizing the Stable Surface Layer in the Medium-Range Forecast Model. Office Note 321, US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 1986. 24

  36. Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problems. Rev Geophys, 1982, 20: 851–875

    Article  Google Scholar 

  37. Paulson C. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol, 1970, 9: 857–861

    Article  Google Scholar 

  38. Beljaars A C M, Viterbo P. The sensitivity of winter evaporation to the formulation of aerodynamic resistance in the ECMWF model. Bound-Layer Meteor, 1994, 71: 135–149

    Article  Google Scholar 

  39. Yang K, Watanabe T, Koike T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy Budget. J Meteorol Soc Jpn, 2007, 85: 229–242

    Article  Google Scholar 

  40. Zilitinkevich S. Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Poll III, 1995, 1: 53–60

    Google Scholar 

  41. Yang K, Ma Y, Koike T, et al. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J Appl Meteorol Climatol, 2008, 47: 276–290

    Article  Google Scholar 

  42. Smith S R, Hughes P J, Bourassa M A. A comparison of nine monthly air-sea flux products. Int J Climatol, 2011, 31: 1002–1027

    Article  Google Scholar 

  43. Duan A, Wu G. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J Clim, 2008, 21: 3149–3164

    Article  Google Scholar 

  44. Yanai M, Li C. Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon Weather Rev, 1994, 122: 305–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Liu, Y. & Wu, G. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci. China Earth Sci. 55, 779–786 (2012). https://doi.org/10.1007/s11430-012-4379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4379-2

Keywords

Navigation