Skip to main content
Log in

Mitochondrien als Kraftwerk der β-Zelle

Einfluss von Glucosemetabolismus und mitochondrialer Dynamik

Mitochondria as the powerhouse of beta cells

Influence of glucose metabolism and mitochondrial dynamics

  • CME Zertifizierte Fortbildung
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Störungen im glucotropen Regelkreis führen zu einem Typ-2-Diabetes mellitus (T2DM). Neben der peripheren Insulinresistenz trägt zur Manifestation eine gestörte Insulinsekretion durch Dysfunktion der β-Zellen des Pankreas bei. β-Zellen messen durch Expression des Sensorproteins Glucokinase die Glucosekonzentration im Blut und passen dadurch die Insulinsekretion an den Ernährungszustand an. Eine regulierte Insulinfreisetzung in Abhängigkeit vom wechselnden Substratangebot an Kohlenhydraten, Fetten und Proteinen ist für die Glucosehomöostase des Blutes sowie den Energiemetabolismus der Zellen essenziell und gerät durch Überalimentation aus dem Gleichgewicht. Mitochondrien sind die zentrale Schaltstelle für die bedarfsgerechte Bereitstellung der zellulären Energie. Für ihre Funktion ist ihre morphologische Struktur essenziell. Diese ist mitnichten starr, sondern hochdynamisch. Mitochondrien bilden in β-Zellen ein tubuläres Netzwerk, das durch ständige Fusions- und Teilungsprozesse aufrechterhalten wird. Geraten diese Prozesse unter Bedingungen eines Überangebots an Glucose und Fetten aus dem Gleichgewicht, begünstigt diese mitochondriale Dysfunktion einen T2DM.

Abstract

Glucose intolerance is the major cause of type 2 diabetes mellitus (T2DM). In addition to peripheral insulin resistance, pancreatic beta cell dysfunction with reduced insulin secretion contributes to T2DM manifestation. The glucose sensor enzyme glucokinase is the key regulator in beta cells coupling an increase in blood glucose to insulin secretion. This demand-based insulin secretion is important for blood glucose homeostasis and cellular energy metabolism despite changing substrate availability from carbohydrates, fat and proteins. Supernutrition induces an imbalance in this control loop. Mitochondria are the pivotal organelles of cellular energy. The mitochondrial morphology is crucial to maintain their function and is by no means fixed but highly dynamic. Mitochondria form a tubular network in β-cells, which frequently undergoes fusion and fission events. Hyperglycemia and hyperlipidemia promote maladjustment of the mitochondrial network, thus contributing to mitochondrial dysfunction and promoting T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Haataja L, Gurlo T, Huang CJ et al (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29:303–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Florez JC, Hirschhorn J, Altshuler D (2003) The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 4:257–291

    Article  CAS  PubMed  Google Scholar 

  4. Drong AW, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92:707–715

    Article  CAS  PubMed  Google Scholar 

  5. Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207

    Article  CAS  PubMed  Google Scholar 

  6. Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306

    Article  CAS  PubMed  Google Scholar 

  7. Donath MY, Schumann DM, Faulenbach M et al (2008) Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 31(Suppl 2):161–164

    Article  Google Scholar 

  8. Tiedge M, Lortz S, Drinkgern J et al (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    Article  CAS  PubMed  Google Scholar 

  9. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61

    Article  CAS  PubMed  Google Scholar 

  10. Jin W, Patti ME (2009) Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes. Clin Sci 116:99–111

    Article  CAS  PubMed  Google Scholar 

  11. Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523

    Article  PubMed  Google Scholar 

  12. Jung HS, Lee MS (2010) Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci 1201:79–83

    Article  CAS  PubMed  Google Scholar 

  13. Nolan CJ, Madiraju MS, Delghingaro-Augusto V et al (2006) Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 55(Suppl 2):16–23

    Article  Google Scholar 

  14. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29:351–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Newsholme P, Haber EP, Hirabara SM et al (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Takahashi HK, Santos LR, Roma LP et al (2014) Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic beta-cells. Biochem J 460:411–423

    Article  CAS  PubMed  Google Scholar 

  17. El-Assaad W, Joly E, Barbeau A et al (2010) Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 151:3061–3073

    Article  CAS  PubMed  Google Scholar 

  18. Lupi R, Dotta F, Marselli L et al (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51:1437–1442

    Article  CAS  PubMed  Google Scholar 

  19. Baltrusch S, Tiedge M (2006) Glucokinase regulatory network in pancreatic beta-cells and liver. Diabetes 55(Suppl 2):55–64

    Article  Google Scholar 

  20. Schuit F, De Vos A, Farfari S et al (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579

    Article  CAS  PubMed  Google Scholar 

  21. Prentki M, Tornheim K, Corkey BE (1997) Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia 40(Suppl 2):32–41

    Article  Google Scholar 

  22. Maechler P (2002) Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci 59:1803–1818

    Article  CAS  PubMed  Google Scholar 

  23. Wiederkehr A, Wollheim CB (2012) Mitochondrial signals drive insulin secretion in the pancreatic β-cell. Mol Cell Endocrinol 353:128–137

    Article  CAS  PubMed  Google Scholar 

  24. Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751

    Article  CAS  PubMed  Google Scholar 

  25. Kim JW, Yoon KH (2011) Glucolipotoxicity in pancreatic beta-cells. Diabetes Metab J 35:444–450

    Article  PubMed Central  PubMed  Google Scholar 

  26. Poitout V, Amyot J, Semache M et al (2010) Glucolipotoxicity of the pancreatic beta cell. Biochim Biophys Acta 1801:289–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chawla A, Nguyen KD, Goh YP (2011) Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 11:738–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  29. Johnson DC, Dean DR, Smith AD et al (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281

    Article  CAS  PubMed  Google Scholar 

  30. Scheffler IE (2001) Mitochondria make a come back. Adv Drug Deliv Rev 49:3–26

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Kim CN, Yang J et al (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  CAS  PubMed  Google Scholar 

  32. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  33. Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825

    Article  CAS  PubMed  Google Scholar 

  34. Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  35. Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412

    Article  CAS  PubMed  Google Scholar 

  36. Maassen JA, Janssen GM, ‚t Hart LM (2005) Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37:213–221

    Article  CAS  PubMed  Google Scholar 

  37. Wallace DC (1997) Mitochondrial DNA in aging and disease. Sci Am 277:40–47

    Article  CAS  PubMed  Google Scholar 

  38. Beckman KB, Ames BN (1998) Mitochondrial aging: open questions. Ann N Y Acad Sci 854:118–127

    Article  CAS  PubMed  Google Scholar 

  39. Bensch KG, Mott JL, Chang SW et al (2009) Selective mtDNA mutation accumulation results in beta-cell apoptosis and diabetes development. Am J Physiol Endocrinol Metab 296:E672–E680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Maassen JA, ‚t Hart LM, Van Essen E et al (2004) Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 53(Suppl 1):103–109

    Article  Google Scholar 

  41. Weiss H, Wester-Rosenloef L, Koch C et al (2012) The mitochondrial Atp8 mutation induces mitochondrial ROS generation, secretory dysfunction, and beta-cell mass adaptation in conplastic B6-mtFVB mice. Endocrinology 153:4666–4676

    Article  CAS  PubMed  Google Scholar 

  42. Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    Article  CAS  PubMed  Google Scholar 

  43. Rizzuto R, Brini M, De Giorgi F et al (1996) Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr Biol 6:183–188

    Article  CAS  PubMed  Google Scholar 

  44. Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14:R283–R289

    Article  CAS  PubMed  Google Scholar 

  45. Liesa M, Palacín M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845

    Article  CAS  PubMed  Google Scholar 

  46. Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wikstrom JD, Twig G, Shirihai OS (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 41:1914–1927

    Article  CAS  PubMed  Google Scholar 

  49. Ono T, Isobe K, Nakada K et al (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275

    Article  CAS  PubMed  Google Scholar 

  50. Busch KB, Bereiter-Hahn J, Wittig I et al (2006) Mitochondrial dynamics generate equal distribution but patchwork localization of respiratory Complex I. Mol Membr Biol 23:509–520

    Article  CAS  PubMed  Google Scholar 

  51. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097

    Article  CAS  PubMed  Google Scholar 

  52. Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Catlett NL, Weisman LS (2000) Divide and multiply: organelle partitioning in yeast. Curr Opin Cell Biol 12:509–516

    Article  CAS  PubMed  Google Scholar 

  54. Bach D, Pich S, Soriano FX et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278:17190–17197

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka A, Cleland MM, Xu S et al (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Zorzano A, Liesa M, Sebastián D et al (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21:566–574

    Article  CAS  PubMed  Google Scholar 

  57. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192

    Article  CAS  PubMed  Google Scholar 

  58. Santel A, Frank S, Gaume B et al (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116:2763–2774

    Article  CAS  PubMed  Google Scholar 

  59. Ranieri M, Brajkovic S, Riboldi G et al (2013) Mitochondrial fusion proteins and human diseases. Neurol Res Int 2013:293893

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ishihara N, Fujita Y, Oka T et al (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Head B, Griparic L, Amiri M et al (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Cipolat S, Martins de Brito O, Dal Zilio B et al (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101:15927–15932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Frezza C, Cipolat S, Martins de Brito O et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  64. Griparic L, Wel NN van der, Orozco IJ et al (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798

    Article  CAS  PubMed  Google Scholar 

  65. Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    Article  CAS  PubMed  Google Scholar 

  66. Yoon Y, Krueger EW, Oswald BJ et al (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Lee S, Jeong SY, Lim WC et al (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282:22977–22983

    Article  CAS  PubMed  Google Scholar 

  68. Stojanovski D, Koutsopoulos OS, Okamoto K et al (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117:1201–1210

    Article  CAS  PubMed  Google Scholar 

  69. James DI, Parone PA, Mattenberger Y et al (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379

    Article  CAS  PubMed  Google Scholar 

  70. Pitts KR, McNiven MA, Yoon Y (2004) Mitochondria-specific function of the dynamin family protein DLP1 is mediated by its C-terminal domains. J Biol Chem 279:50286–50294

    Article  CAS  PubMed  Google Scholar 

  71. Zhu PP, Patterson A, Stadler J et al (2004) Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279:35967–35974

    Article  CAS  PubMed  Google Scholar 

  72. Mears JA, Lackner LL, Fang S et al (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Elgass K, Pakay J, Ryan MT et al (2013) Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833:150–161

    Article  CAS  PubMed  Google Scholar 

  74. Chang CR, Manlandro CM, Arnoult D et al (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178:71–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Nakamura N, Kimura Y, Tokuda M et al (2006) MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7:1019–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Wang H, Song P, Du L et al (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286:11649–11658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Yonashiro R, Ishido S, Kyo S et al (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25:3618–3626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10:748–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Wang W, Wang Y, Long J et al (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15:186–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Taguchi N, Ishihara N, Jofuku A et al (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    Article  CAS  PubMed  Google Scholar 

  84. Han XJ, Lu YF, Li SA et al (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182:573–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Cereghetti GM, Stangherlin A, Martins de Brito O et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105:15803–15808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  87. Alirol E, James D, Huber D et al (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 17:4593–4605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Lee YJ, Jeong SY, Karbowski M et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259

    Article  CAS  PubMed  Google Scholar 

  90. Molina AJ, Wikstrom JD, Stiles L et al (2009) Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58:2303–2315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Stiles L, Shirihai OS (2012) Mitochondrial dynamics and morphology in beta-cells. Best Pract Res Clin Endocrinol Metab 26:725–738

    Article  CAS  PubMed  Google Scholar 

  92. Koch A, Yoon Y, Bonekamp NA et al (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16:5077–5086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Yoon Y, Galloway CA, Jhun BS et al (2011) Mitochondrial dynamics in diabetes. Antioxid Redox Signal 14:439–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Peng L, Men X, Zhang W et al (2012) Involvement of dynamin-related protein 1 in free fatty acid-induced INS-1-derived cell apoptosis. PLoS One 7:e49258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Peng L, Men X, Zhang W et al (2011) Dynamin-related protein 1 is implicated in endoplasmic reticulum stress-induced pancreatic β-cell apoptosis. Int J Mol Med 28:161–169

    CAS  PubMed  Google Scholar 

  96. Men X, Wang H, Li M et al (2009) Dynamin-related protein 1 mediates high glucose induced pancreatic beta cell apoptosis. Int J Biochem Cell Biol 41:879–890

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Baltrusch, F. Reinhardt und M. Tiedge geben an, dass kein Interessenkonflikt besteht.

Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baltrusch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltrusch, S., Reinhardt, F. & Tiedge, M. Mitochondrien als Kraftwerk der β-Zelle. Diabetologe 11, 231–242 (2015). https://doi.org/10.1007/s11428-014-1278-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-014-1278-5

Schlüsselwörter

Keywords

Navigation