Skip to main content
Log in

Side chain engineering of quinoxaline-based small molecular nonfullerene acceptors for high-performance poly(3-hexylthiophene)-based organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Poly(3-hexylthiophene) (P3HT) is one of the most used semiconducting polymers for organic photovoltaics because it has potential for commercialization due to its easy synthesis and stability. Although the rapid development of the small molecular non-fullerene acceptors (NFAs) have largely improved the power conversion efficiency (PCE) of organic solar cells (OSCs) based on other complicated p-type polymers, the PCE of P3HT-based OSCs is still low. In addition, the design principle and structure-properties correlation for the NFAs matching well with P3HT are still unclear and need to be investigated in depth. Here we designed a series of NFAs comprised of acceptor (A) and donor (D) units with an A2-A1-D-A1-A2 configuration. These NFAs are abbreviated as Qx3, Qx3b and Qx3c, where indaceno[1,2-b:5,6-b′]dithiophene (IDT), quinoxaline (Qx) and 2-(1,1-dicyanomethylene)rhodanine serve as the middle D, bridged A1 and the end group A2, respectively. By subtracting the phenyl side groups appended on both IDT and Qx skeletons, the absorption spectra, energy levels and crystallinity could be regularly modulated. When paired with P3HT, three NFAs show totally different photovoltaic performance with PCEs of 3.37% (Qx3), 6.37% (Qx3b) and 0.03% (Qx3c), respectively. From Qx3 to Qx3b, the removing of phenyl side chain in the middle IDT unit results in the increase of crystallinity and electron mobility. However, after subtracting all the grafted phenyl side groups on both IDT and Qx units, the final molecule Qx3c exhibits the lowest PCE of only 0.03%, which is mainly attributed to the serious phase-separation of the blend film. These results demonstrate that optimizing the substituted position of phenyl side groups for A2-A1-D-A1-A2 type NFAs is vital to regulate the optoelectronic property of molecule and morphological property of active layer for high performance P3HT-based OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G Gao J Hummelen JC Wudl F Heeger AJ. Science, 1995, 270: 1789–1791

    CAS  Google Scholar 

  2. Yan C Barlow S Wang Z Yan H Jen AKY Marder SR Zhan X. Nat Rev Mater, 2018, 3: 18003

    CAS  Google Scholar 

  3. Tang A Zhan C Yao J Zhou E. Adv Mater, 2017, 29: 1600013

    Google Scholar 

  4. Geng Y Tang A Tajima K Zeng Q Zhou E. J Mater Chem A, 2019, 7: 64–96

    CAS  Google Scholar 

  5. Yang J Xiao B Tang A Li J Wang X Zhou E. Adv Mater, 2018, 4: 1804699

    Google Scholar 

  6. Li G Shrotriya V Huang J Yao Y Moriarty T Emery K Yang Y. Nat Mater, 2005, 4: 864–868

    CAS  Google Scholar 

  7. Fan B Zhang D Li M Zhong W Zeng Z Ying L Huang F Cao Y. Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  8. Hildner R Köhler A Müller-Buschbaum P Panzer F Thelakkat M. Adv Energy Mater, 2017, 7: 1700314

    Google Scholar 

  9. Po R Bernardi A Calabrese A Carbonera C Corso G Pellegrino A. Energy Environ Sci, 2014, 7: 925–943

    CAS  Google Scholar 

  10. Liu Y Summers MA Edder C Fréchet JMJ McGehee MD. Adv Mater, 2005, 17: 2960–2964

    CAS  Google Scholar 

  11. Guo X Cui C Zhang M Huo L Huang Y Hou J Li Y. Energy Environ Sci, 2012, 5: 7943

    CAS  Google Scholar 

  12. Zhai W Tang A Xiao B Wang X Chen F Zhou E. Sci Bull, 2018, 63: 845–852

    CAS  Google Scholar 

  13. Mahmood A Yang J Hu J Wang X Tang A Geng Y Zeng Q Zhou E. J Phys Chem C, 2018, 122: 29122–29128

    CAS  Google Scholar 

  14. Yang L Gu W Lv L Chen Y Yang Y Ye P Wu J Hong L Peng A Huang H. Angew Chem Int Ed, 2018, 57: 1096–1102

    CAS  Google Scholar 

  15. Yuan J Zhang Y Zhou L Zhang G Yip HL Lau TK Lu X Zhu C Peng H Johnson PA Leclerc M Cao Y Ulanski J Li Y Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  16. Yang J Cong P Chen L Wang X Li J Tang A Zhang B Geng Y Zhou E. ACS Macro Lett, 2019, 8: 743–748

    Google Scholar 

  17. Chen Y Geng Y Tang A Wang X Sun Y Zhou E. Chem Commun, 2019, 55: 6708–6710

    CAS  Google Scholar 

  18. Winzenberg KN Kemppinen P Scholes FH Collis GE Shu Y Birendra Singh T Bilic A Forsyth CM Watkins SE. Chem Commun, 2013, 49: 6307–6309

    CAS  Google Scholar 

  19. Holliday S Ashraf RS Nielsen CB Kirkus M Röhr JA Tan CH Collado-Fregoso E Knall AC Durrant JR Nelson J McCulloch I. J Am Chem Soc, 2015, 137: 898–904

    CAS  PubMed  Google Scholar 

  20. Kim Y Song CE Moon SJ Lim E. Chem Commun, 2014, 50: 8235–8238

    CAS  Google Scholar 

  21. Lin Y Li Y Zhan X. Adv Energy Mater, 2013, 3: 724–728

    CAS  Google Scholar 

  22. Gupta A Rananaware A Srinivasa Rao P Duc La D Bilic A Xiang W Li J Evans RA Bhosale SV Bhosale SV. Mater Chem Front, 2017, 1: 1600–1606

    CAS  Google Scholar 

  23. Yan Q Zhou Y Zheng YQ Pei J Zhao D. Chem Sci, 2013, 4: 4389–4394

    CAS  Google Scholar 

  24. Liu F Zhou Z Zhang C Vergote T Fan H Liu F Zhu X. J Am Chem Soc, 2016, 138: 15523–15526

    CAS  PubMed  Google Scholar 

  25. Qiu N Yang X Zhang H Wan X Li C Liu F Zhang H Russell TP Chen Y. Chem Mater, 2016, 28: 6770–6778

    CAS  Google Scholar 

  26. Baran D Ashraf RS Hanifi DA Abdelsamie M Gasparini N Röhr JA Holliday S Wadsworth A Lockett S Neophytou M Emmott CJM Nelson J Brabec CJ Amassian A Salleo A Kirchartz T Durrant JR McCulloch I. Nat Mater, 2017, 16: 363–369

    CAS  PubMed  Google Scholar 

  27. Wu Y Bai H Wang Z Cheng P Zhu S Wang Y Ma W Zhan X. Energy Environ Sci, 2015, 8: 3215–3221

    CAS  Google Scholar 

  28. Holliday S Ashraf RS Wadsworth A Baran D Yousaf SA Nielsen CB Tan CH Dimitrov SD Shang Z Gasparini N Alamoudi M Laquai F Brabec CJ Salleo A Durrant JR McCulloch I. Nat Commun, 2016, 7: 11585

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiao B Tang A Zhang J Mahmood A Wei Z Zhou E. Adv Energy Mater, 2017, 7: 1602269

    Google Scholar 

  30. Xiao B Tang A Yang J Wei Z Zhou E. ACS Macro Lett, 2017, 6: 410–414

    CAS  Google Scholar 

  31. Tang A Xiao B Wang Y Gao F Tajima K Bin H Zhang ZG Li Y Wei Z Zhou E. Adv Funct Mater, 2018, 28: 1704507

    Google Scholar 

  32. Tang A Xiao B Chen F Zhang J Wei Z Zhou E. Adv Energy Mater, 2018, 8: 1801582

    Google Scholar 

  33. Xiao B Tang A Cheng L Zhang J Wei Z Zeng Q Zhou E. Sol RRL, 2017, 1: 1700166

    Google Scholar 

  34. Xiao B Tang A Zhang Q Li G Wang X Zhou E. ACS Appl Mater Interfaces, 2018, 10: 34427–34434

    CAS  PubMed  Google Scholar 

  35. Yuan J Ouyang J Cimrová V Leclerc M Najari A Zou Y. J Mater Chem C, 2017, 5: 1858–1879

    CAS  Google Scholar 

  36. Gedefaw D Prosa M Bolognesi M Seri M Andersson MR. Adv Energy Mater, 2017, 7: 1700575

    Google Scholar 

  37. Liu M Gao Y Zhang Y Liu Z Zhao L. Polym Chem, 2017, 8: 4613–4636

    CAS  Google Scholar 

  38. Xiao B Tang A Yang J Mahmood A Sun X Zhou E. ACS Appl Mater Interfaces, 2018, 10: 10254–10261

    CAS  PubMed  Google Scholar 

  39. Wang T Lau TK Lu X Yuan J Feng L Jiang L Deng W Peng H Li Y Zou Y. Macromolecules, 2018, 51: 2838–2846

    CAS  Google Scholar 

  40. Zheng Z Awartani OM Gautam B Liu D Qin Y Li W Bataller A Gundogdu K Ade H Hou J. Adv Mater, 2017, 29: 1604241

    Google Scholar 

  41. Chen W Salim T Fan H James L Lam YM Zhang Q. RSC Adv, 2014, 4: 25291–25301

    CAS  Google Scholar 

  42. Qi X Lo YC Zhao Y Xuan L Ting HC Wong KT Rahaman M Chen Z Xiao L Qu B. Front Chem, 2018, 6: 260

    PubMed  PubMed Central  Google Scholar 

  43. Rivnay J Noriega R Kline RJ Salleo A Toney MF. Phys Rev B, 2011, 84: 045203

    Google Scholar 

  44. Zhu C Zhao Z Chen H Zheng L Li X Chen J Sun Y Liu F Guo Y Liu Y. J Am Chem Soc, 2017, 139: 17735–17738

    CAS  PubMed  Google Scholar 

  45. Bi YG Feng J Ji JH Yi FS Li YF Liu YF Zhang XL Sun HB. Nanophotonics, 2017, 7: 60

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDB-SSW-SLH033), the National Key Research and Development Program of China (2017YFA0206600) and the National Natural Science Foundation of China (51673048, 21875052, 51773046, 21602040, 51873044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongqiang Li, Yanfang Geng or Erjun Zhou.

Supporting Information

11426_2019_9618_MOESM1_ESM.docx

Side Chain Engineering of Quinoxaline-based Small Molecular Nonfullerene Acceptors for High-performance Poly(3-hexylthiophene)-based Organic Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Zhang, Q., Li, G. et al. Side chain engineering of quinoxaline-based small molecular nonfullerene acceptors for high-performance poly(3-hexylthiophene)-based organic solar cells. Sci. China Chem. 63, 254–264 (2020). https://doi.org/10.1007/s11426-019-9618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9618-7

Keywords

Navigation