Skip to main content
Log in

Chemometric methods for extracting information from temperature-dependent near-infrared spectra

  • Reviews
  • SPECIAL ISSUE: Dedicated to the 100th Anniversary of Nankai University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Temperature-dependent near-infrared (NIR) spectroscopy is a new technique for measuring the NIR spectra of a sample at different temperatures. Taking the advantage of the temperature effect, the technique has shown its potential in both quantitative and qualitative analysis. The technique has been proved to be powerful in determination of the analytes in complex samples, particularly in studying the functions of water in aqueous systems due to the significant effect of temperature on the NIR spectra of water. Because of the complicated interactions in the samples and the overlapping of the broad peaks in NIR spectra, it is difficult to extract the temperature-dependent information from the spectra. Chemometric methods, therefore, have been developed for improving the spectral resolution and extracting the temperature-induced spectral information. In this review, recent advances in the studies of chemometric methods and the applications in resolution, quantitative and structural analysis of temperature-dependent NIR spectra were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czarnecki MA, Morisawa Y, Futami Y, Ozaki Y. Chem Rev, 2015, 115: 9707–9744

    Article  CAS  PubMed  Google Scholar 

  2. Tsenkova R. J Near Infrared Spectr, 2009, 17: 303–313

    Article  CAS  Google Scholar 

  3. Shao X, Kang J, Cai W. Talanta, 2010, 82: 1017–1021

    Article  CAS  PubMed  Google Scholar 

  4. Kang J, Cai W, Shao X. Talanta, 2011, 85: 420–424

    Article  CAS  PubMed  Google Scholar 

  5. Kawano S, Abe H, Iwamoto M. J Near Infrared Spectr, 1995, 3: 211–218

    Article  CAS  Google Scholar 

  6. Tarumi M, Shimada M, Murakami T, Tamura M, Shimada M, Arimoto H, Yamada Y. Phys Med Biol, 2003, 48: 2373–2390

    Article  CAS  PubMed  Google Scholar 

  7. Cui X, Liu X, Yu X, Cai W, Shao X. Anal Chim Acta, 2017, 957: 47–54

    Article  CAS  PubMed  Google Scholar 

  8. Leung AK, Chau F, Gao J. Anal Chem, 1998, 70: 5222–5229

    Article  CAS  Google Scholar 

  9. Shao XG, Cai WS. Rev Anal Chem, 1998, 17: 235–285

    Article  CAS  Google Scholar 

  10. Shao XG, Leung AKM, Chau FT. Acc Chem Res, 2003, 36: 276–283

    Article  CAS  PubMed  Google Scholar 

  11. Shao X, Ma C. Chemom Intell Lab Syst, 2003, 69: 157–165

    Article  CAS  Google Scholar 

  12. Tauler R, Kowalski B, Fleming S. Anal Chem, 1993, 65: 2040–2047

    Article  CAS  Google Scholar 

  13. Tauler R. Chemom Intell Lab Syst, 1995, 30: 133–146

    Article  CAS  Google Scholar 

  14. Navea S, de Juan A, Tauler R. Anal Chem, 2002, 74: 6031–6039

    Article  CAS  PubMed  Google Scholar 

  15. Azzouz T, Tauler R. Talanta, 2003, 74: 1201–1210

    Article  CAS  Google Scholar 

  16. Jonsson P, Johansson AI, Gullberg J, Trygg J A J, Grung B, Marklund S, Sjöström M, Antti H, Moritz T. Anal Chem, 2005, 77: 5635–5642

    Article  CAS  Google Scholar 

  17. Navea S, de Juan A, Tauler R. Anal Chem, 2003, 75: 5592–5601

    Article  CAS  PubMed  Google Scholar 

  18. Czarnik-Matusewicz B, Pilorz S, Hawranek JP. Anal Chim Acta, 2005, 544: 15–25

    Article  CAS  Google Scholar 

  19. Czarnecki MA, Wojtków D. J Mol Struct, 2008, 883–884: 203–208

    Google Scholar 

  20. Chen Y, Ozaki Y, Czarnecki MA. Phys Chem Chem Phys, 2013, 15: 18694–18701

    Article  CAS  PubMed  Google Scholar 

  21. Barba MI, Larrechi MS, Coronas A. Anal Chim Acta, 2016, 919: 20–27

    Article  CAS  PubMed  Google Scholar 

  22. Maeda H, Ozaki Y, Tanaka M, Hayashi N, Kojima T. J Near Infrared Spectr, 1995, 3: 191–201

    Article  CAS  Google Scholar 

  23. Cui X, Cai W, Shao X. RSC Adv, 2016, 6: 105729–105736

    Article  CAS  Google Scholar 

  24. Shao X, Cui X, Liu Y, Xia Z, Cai W. ChemistrySelect, 2017, 2: 10027–10032

    Article  CAS  Google Scholar 

  25. Shao X, Cai W, Sun P, Zhang M, Zhao G. Anal Chem, 1997, 69: 1722–1725

    Article  CAS  PubMed  Google Scholar 

  26. Yang Y, Tu J, Cai W, Shao X. Talanta, 2012, 99: 871–874

    Article  CAS  PubMed  Google Scholar 

  27. Shan R, Cai W, Shao X. Chemom Intell Lab Syst, 2014, 131: 31–36

    Article  CAS  Google Scholar 

  28. Wang C, Wang S, Cai W, Shao X. Talanta, 2017, 162: 123–129

    Article  CAS  PubMed  Google Scholar 

  29. Fan M, Cai W, Shao X. Appl Spectrosc, 2017, 71: 472–479

    Article  CAS  PubMed  Google Scholar 

  30. Liu XW, Cui XY, Yu XM, Cai WS, Shao XG. Chin Chem Lett, 2017, 28: 1447–1452

    Article  CAS  Google Scholar 

  31. Shao X, Cui X, Yu X, Cai W. Talanta, 2018, 183: 142–148

    Article  CAS  PubMed  Google Scholar 

  32. Qi N, Zhang Z, Xiang Y, Harrington PB. Anal Chim Acta, 2012, 724: 12–19

    Article  CAS  PubMed  Google Scholar 

  33. Shao X, Bian X, Cai W. Anal Chim Acta, 2010, 666: 32–37

    Article  CAS  PubMed  Google Scholar 

  34. Mao Z, Shan R, Wang J, Cai W, Shao X. Spectrochim Acta Part AMol Biomol Spectr, 2014, 128: 711–715

    Article  CAS  Google Scholar 

  35. Li Z, Zhou M, Luo Y, Li G, Lin L. Talanta, 2016, 155: 47–52

    Article  CAS  PubMed  Google Scholar 

  36. Timmerman ME. British J Math Stat Psychol, 2006, 59: 301–320

    Article  Google Scholar 

  37. Shan R, Zhao Y, Fan M, Liu X, Cai W, Shao X. Talanta, 2015, 131: 170–174

    Article  CAS  PubMed  Google Scholar 

  38. Wold S, Geladi P, Esbensen K, Öhman J. J Chemom, 1987, 1: 41–56

    Article  CAS  Google Scholar 

  39. Harshman RA. UCLA Work Pap Phon, 1970, 16: 1–84

    Google Scholar 

  40. Wu HL, Shibukawa M, Oguma K. J Chemom, 1998, 12: 1–26

    Article  CAS  Google Scholar 

  41. Liu YJ, André S, Saint Cristau L, Lagresle S, Hannas Z, Calvosa É, Devos O, Duponchel L. Anal Chim Acta, 2017, 952: 9–17

    Article  CAS  PubMed  Google Scholar 

  42. Nikolajsen RPH, Booksh KS, Hansen ÅM, Bro R. Anal Chim Acta, 2003, 475: 137–150

    Article  CAS  Google Scholar 

  43. Yin XL, Wu HL, Gu HW, Hu Y, Wang L, Xia H, Xiang SX, Yu RQ. J Chromatogr A, 2016, 1435: 75–84

    Article  CAS  PubMed  Google Scholar 

  44. Peinado AC, van den Berg F, Blanco M, Bro R. Chemom Intell Lab Syst, 2006, 83: 75–82

    Article  CAS  Google Scholar 

  45. Cui X, Zhang J, Cai W, Shao X. Chemometrics Intelligent Laboratory Syst, 2017, 170: 109–117

    Article  CAS  Google Scholar 

  46. Collins JR. Phys Rev, 1925, 26: 771–779

    Article  CAS  Google Scholar 

  47. Luck WAP. Berichte der Bunsengesellschaft für Physikalische Chem, 1965, 69: 626–637

    Article  Google Scholar 

  48. Lin J, Brown CW. Appl Spectrosc, 1993, 47: 1720–1727

    Article  CAS  Google Scholar 

  49. Luck WAP. J Mol Struct, 1998, 448: 131–142

    Article  CAS  Google Scholar 

  50. Segtnan VH, Šašić Š, Isaksson T, Ozaki Y. Anal Chem, 2001, 73: 3153–3161

    Article  CAS  PubMed  Google Scholar 

  51. Czarnik-Matusewicz B, Pilorz S. Vibal Spectr, 2006, 40: 235–245

    Article  CAS  Google Scholar 

  52. Šašić S, Segtnan VH, Ozaki Y. J Phys Chem A, 2002, 106: 760–766

    Article  Google Scholar 

  53. Chatani E, Tsuchisaka Y, Masuda Y, Tsenkova R. PLoS ONE, 2014, 9: e101997

    Google Scholar 

  54. Bázár G, Kovacs Z, Tanaka M, Furukawa A, Nagai A, Osawa M, Itakura Y, Sugiyama H, Tsenkova R. Anal Chim Acta, 2015, 896: 52–62

    Article  CAS  PubMed  Google Scholar 

  55. Czarnecki MA, Wojtków D. J Phys Chem A, 2004, 108: 2411–2417

    Article  CAS  Google Scholar 

  56. Wojtków D, Czarnecki MA. J Phys Chem A, 2005, 109: 8218–8224

    Article  CAS  PubMed  Google Scholar 

  57. Wojtków D, Czarnecki MA. J Phys Chem A, 2006, 110: 10552–10557

    Article  CAS  PubMed  Google Scholar 

  58. Gowen AA, Amigo JM, Tsenkova R. Anal Chim Acta, 2013, 759: 8–20

    Article  CAS  PubMed  Google Scholar 

  59. Czarnecki MA, Haufa KZ. J Phys Chem A, 2005, 109: 1015–1021

    Article  CAS  PubMed  Google Scholar 

  60. Cheng D, Cai WS, Shao XG. Appl Spectrosc, 2018, 72: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  61. Ma L, Cui X, Cai W, Shao X. Phys Chem Chem Phys, 2018, 20: 20132–20140

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguang Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Sun, Y., Cai, W. et al. Chemometric methods for extracting information from temperature-dependent near-infrared spectra. Sci. China Chem. 62, 583–591 (2019). https://doi.org/10.1007/s11426-018-9398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9398-2

Keywords

Navigation