Skip to main content
Log in

Design, synthesis and biological evaluation of amino organophosphorus imidazoles as a new type of potential antimicrobial agents

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of amino organophosphorus imidazoles were designed and synthesized as a novel structural type of antimicrobial agents. Bioactive evaluation in vitro showed that compound 3f exhibited equipotent or superior anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) and anti-S. cerevisiae efficiencies (minimal inhibitory concentration (MIC)=2 μg/mL) to clinical drugs, and the combinations with antibacterial or antifungal drugs enhanced the antimicrobial efficiency. Highly active molecule 3f showed low propensity for bacteria to develop resistance, and the preliminary action mechanism studies demonstrated that 3f was membrane-active, but had no significant intercalation towards MRSA DNA. The computational study on 3f reasonably explained its high antimicrobial activity. Experimental data revealed that ground-state 3f-HSA complexes were formed mainly through hydrophobic interactions and hydrogen bonds with a spontaneous process, and the non-radioactive energy transfer from HSA to 3f occurred beyond Förster resonance energy transfer theory. The participation of metal ions in 3f-HSA supramolucular system could increase the concentration of free compound 3f, and shorten its storage time and half-life in the blood to improve the maximum antimicrobial efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Chen YP, Miller KP, Ganewatta MS, Bam M, Yan Y, Nagarkatti M, Decho AW, Tang C. J Am Chem Soc, 2014, 136: 4873–4876

    Article  CAS  Google Scholar 

  2. Oh D, Sun J, Nasrolahi Shirazi A, LaPlante KL, Rowley DC, Parang K. Mol Pharm, 2014, 11: 3528–3536

    Article  CAS  Google Scholar 

  3. Zhou CH, Wang Y. Curr Med Chem, 2012, 19: 239–280

    Article  CAS  Google Scholar 

  4. Wang H, Jeyakkumar P, Nagarajan S, Meng JP, Zhou CH. Prog Chem, 2015, 27: 704–743

    Google Scholar 

  5. Wang XL, Wan K, Zhou CH. Eur J Med Chem, 2010, 45: 4631–4639

    Article  CAS  Google Scholar 

  6. Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Med Res Rev, 2014, 34: 340–437

    Article  Google Scholar 

  7. Pieczonka AM, Strzelczyk A, Sadowska B, Mlostoń G, Stączek P. Eur J Med Chem, 2013, 64: 389–395

    Article  CAS  Google Scholar 

  8. Peng XM, Damu GLV, Zhou CH. Curr Pharm Des, 2013, 19: 3884–3930

    Article  CAS  Google Scholar 

  9. Peng XM, Cai GX, Zhou CH. Curr Top Med Chem, 2013, 13: 1963–2010

    Article  CAS  Google Scholar 

  10. Wen SQ, Jeyakkumar P, Avula SR, Zhang L, Zhou CH. Bioorg Med Chem Lett, 2016, 26: 2768–2773

    Article  CAS  Google Scholar 

  11. Peng XM, Peng LP, Li S, Avula SR, Kannekanti VK, Zhang SL, Tam KY, Zhou CH. Future Med Chem, 2016, 8: 1927–1940

    Article  CAS  Google Scholar 

  12. Gong HH, Baathulaa K, Lv JS, Cai GX, Zhou CH. Med Chem Commun, 2016, 7: 924–931

    Article  CAS  Google Scholar 

  13. Gong HH, Addla D, Lv JS, Zhou CH. Curr Top Med Chem, 2016, 16: 3303–3364

    Article  CAS  Google Scholar 

  14. Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Int J Antimicrob Agents, 2009, 34: 111–120

    Article  CAS  Google Scholar 

  15. Hirsch EB, Raux BR, Zucchi PC, Kim Y, McCoy C, Kirby JE, Wright SB, Eliopoulos GM. Int J Antimicrob Agents, 2015, 46: 642–647

    Article  CAS  Google Scholar 

  16. Faísca Phillips AM, Barros MT, Pacheco M, Dias R. Bioorg Med Chem Lett, 2014, 24: 49–53

    Article  Google Scholar 

  17. Aoyama T, Hirata K, Hirata R, Yamazaki H, Yamamoto Y, Hayashi H, Matsumoto Y. J Clin Pharm Ther, 2012, 37: 356–363

    Article  CAS  Google Scholar 

  18. Hecker SJ, Erion MD. J Med Chem, 2008, 51: 2328–2345

    Article  CAS  Google Scholar 

  19. Zhang HZ, Jeyakkumar P, Vijaya Kumar K, Zhou CH. New J Chem, 2015, 39: 5776–5796

    Article  CAS  Google Scholar 

  20. Zhang L, Kumar KV, Rasheed S, Geng RX, Zhou CH. Chem Biol Drug Des, 2015, 86: 648–655

    Article  CAS  Google Scholar 

  21. Damu GLV, Wang QP, Zhang HZ, Zhang YY, Lv JS, Zhou CH. Sci China Chem, 2013, 56: 952–969

    Article  CAS  Google Scholar 

  22. Jeyakkumar P, Zhang L, Avula SR, Zhou CH. Eur J Med Chem, 2016, 122: 205–215

    Article  CAS  Google Scholar 

  23. Vijesh AM, Isloor AM, Telkar S, Arulmoli T, Fun HK. Arab J Chem, 2013, 6: 197–204

    Article  CAS  Google Scholar 

  24. Zhang L, Addla D, Ponmani J, Wang A, Xie D, Wang YN, Zhang SL, Geng RX, Cai GX, Li S, Zhou CH. Eur J Med Chem, 2016, 111: 160–182

    Article  CAS  Google Scholar 

  25. Dai LL, Zhang HZ, Nagarajan S, Rasheed S, Zhou CH. Med Chem Commun, 2015, 6: 147–154

    Article  CAS  Google Scholar 

  26. Wang Y, Damu GLV, Lv JS, Geng RX, Yang DC, Zhou CH. Bioorg Med Chem Lett, 2012, 22: 5363–5366

    Article  CAS  Google Scholar 

  27. Cheng Y, Wang H, Addla D, Zhou C. Chin J Org Chem, 2016, 36: 1–42

    Article  CAS  Google Scholar 

  28. Zghab I, Trimeche B, Besbes M, Touboul D, Martin MT, Jannet HB. Med Chem Res, 2015, 24: 2167–2176

    Article  CAS  Google Scholar 

  29. Demkowicz S, Rachon J, Daśko M, Kozak W. RSC Adv, 2016, 6: 7101–7112

    Article  CAS  Google Scholar 

  30. Reddy CB, Kumar KS, Kumar MA, Narayana Reddy MV, Krishna BS, Naveen M, Arunasree MK, Reddy CS, Raju CN, Reddy CD. Eur J Med Chem, 2012, 47: 553–559

    Article  CAS  Google Scholar 

  31. Demmer CS, Krogsgaard-Larsen N, Bunch L. Chem Rev, 2011, 111: 7981–8006

    Article  CAS  Google Scholar 

  32. Ensign SC, Vanable EP, Kortman GD, Weir LJ, Hull KL. J Am Chem Soc, 2015, 137: 13748–13751

    Article  CAS  Google Scholar 

  33. Addla D, Wen SQ, Gao WW, Maddili SK, Zhang L, Zhou CH. Med Chem Commun, 2016, 7: 1988–1994

    Article  CAS  Google Scholar 

  34. Jeyakkumar P, Liu HB, Gopala L, Cheng Y, Peng XM, Geng RX, Zhou CH. Bioorg Med Chem Lett, 2017, 27: 1737–1743

    Article  CAS  Google Scholar 

  35. Chellat MF, Raguž L, Riedl R. Angew Chem Int Ed, 2016, 55: 6600–6626

    Article  CAS  Google Scholar 

  36. Kharb R, Tyagi M, Sharma AK. Pharma Chem, 2014, 6: 298–320

    Google Scholar 

  37. Zhang RR, Liu J, Zhang Y, Hou MQ, Zhang MZ, Zhou F, Zhang WH. Eur J Med Chem, 2016, 116: 76–83

    Article  CAS  Google Scholar 

  38. Peng XM, Kumar KV, Damu GLV, Zhou CH. Sci China Chem, 2016, 59: 878–894

    Article  CAS  Google Scholar 

  39. Damu GLV, Cui SF, Peng XM, Wen QM, Cai GX, Zhou CH. Bioorg Med Chem Lett, 2014, 24: 3605–3608

    Article  CAS  Google Scholar 

  40. National Committee for Clinical Laboratory Standards Approved standard Document. M27-A2. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Wayne, PA: National Committee for Clinical Laboratory Standards, 2002

  41. Rosato A, Piarulli M, Corbo F, Muraglia M, Carone A, Vitali M, Vitali C. Curr Med Chem, 2010, 17: 3289–3295

    Article  CAS  Google Scholar 

  42. Zhang HZ, Damu GLV, Cai GX, Zhou CH. Eur J Med Chem, 2013, 64: 329–344

    Article  CAS  Google Scholar 

  43. Kim HY, Wiles JA, Wang Q, Pais GCG, Lucien E, Hashimoto A, Nelson DM, Thanassi JA, Podos SD, Deshpande M, Pucci MJ, Bradbury BJ. J Med Chem, 2011, 54: 3268–3282

    Article  CAS  Google Scholar 

  44. Lohan S, Cameotra SS, Bisht GS. Eur J Med Chem, 2014, 83: 102–115

    Article  CAS  Google Scholar 

  45. Negi B, Kumar D, Kumbukgolla W, Jayaweera S, Ponnan P, Singh R, Agarwal S, Rawat DS. Eur J Med Chem, 2016, 115: 426–437

    Article  CAS  Google Scholar 

  46. Tan H, Liu H, Zhao L, Yuan Y, Li B, Jiang Y, Gong L, Qiu S. Eur J Med Chem, 2017, 125: 492–499

    Article  CAS  Google Scholar 

  47. Ghosh C, Manjunath GB, Akkapeddi P, Yarlagadda V, Hoque J, Uppu DSSM, Konai MM, Haldar J. J Med Chem, 2014, 57: 1428–1436

    Article  CAS  Google Scholar 

  48. Konai MM, Ghosh C, Yarlagadda V, Samaddar S, Haldar J. J Med Chem, 2014, 57: 9409–9423

    Article  CAS  Google Scholar 

  49. Fang XJ, Jeyakkumar P, Avula SR, Zhou Q, Zhou CH. Bioorg Med Chem Lett, 2016, 26: 2584–2588

    Article  CAS  Google Scholar 

  50. Cheng Y, Avula SR, Gao WW, Addla D, Tangadanchu VKR, Zhang L, Lin JM, Zhou CH. Eur J Med Chem, 2016, 124: 935–945

    Article  CAS  Google Scholar 

  51. Cui SF, Addla D, Zhou CH. J Med Chem, 2016, 59: 4488–4510

    Article  CAS  Google Scholar 

  52. Suryawanshi VD, Anbhule PV, Gore AH, Patil SR, Kolekar GB. Ind Eng Chem Res, 2012, 51: 95–102

    Article  CAS  Google Scholar 

  53. Zhang SL, Damu GLV, Zhang L, Geng RX, Zhou CH. Eur J Med Chem, 2012, 55: 164–175

    Article  CAS  Google Scholar 

  54. Peng LP, Nagarajan S, Rasheed S, Zhou CH. Med Chem Commun, 2015, 6: 222–229

    Article  CAS  Google Scholar 

  55. Zhang L, Chang JJ, Zhang SL, Damu GLV, Geng RX, Zhou CH. Bioorg Med Chem, 2013, 21: 4158–4169

    Article  CAS  Google Scholar 

  56. Yin BT, Yan CY, Peng XM, Zhang SL, Rasheed S, Geng RX, Zhou CH. Eur J Med Chem, 2014, 71: 148–159

    Article  CAS  Google Scholar 

  57. Cui SF, Ren Y, Zhang SL, Peng XM, Damu GLV, Geng RX, Zhou CH. Bioorg Med Chem Lett, 2013, 23: 3267–3272

    Article  CAS  Google Scholar 

  58. Varlan A, Hillebrand M. Molecules, 2010, 15: 3905–3919

    Article  CAS  Google Scholar 

  59. Liu B, Guo Y, Wang J, Xu R, Wang X, Wang D, Zhang L, Xu Y. J Luminescence, 2010, 130: 1036–1043

    Article  CAS  Google Scholar 

  60. Nelson T, Fernandez-Alberti S, Roitberg AE, Tretiak S. Phys Chem Chem Phys, 2013, 15: 9245–9256

    Article  CAS  Google Scholar 

  61. Kim H, Abeysirigunawarden SC, Chen K, Mayerle M, Ragunathan K, Luthey-Schulten Z, Ha T, Woodson SA. Nature, 2014, 506: 334–338

    Article  CAS  Google Scholar 

  62. Fudo S, Yamamoto N, Nukaga M, Odagiri T, Tashiro M, Neya S, Hoshino T. Bioorg Med Chem, 2015, 23: 5466–5475

    Article  CAS  Google Scholar 

  63. Li Y, You L, Huang W, Liu J, Zhu H, He B. Eur J Med Chem, 2015, 96: 245–249

    Article  CAS  Google Scholar 

  64. Li Y, You L, Huang W, Liu J, Zhu H, He B. Eur J Med Chem, 2015, 96: 245–249

    Article  CAS  Google Scholar 

  65. Bio M, Rajaputra P, You Y. Bioorg Med Chem Lett, 2016, 26: 145–148

    Article  CAS  Google Scholar 

  66. Cui SF, Peng LP, Zhang HZ, Rasheed S, Vijaya Kumar K, Zhou CH. Eur J Med Chem, 2014, 86: 318–334

    Article  CAS  Google Scholar 

  67. Zhang SL, Chang JJ, Damu GLV, Fang B, Zhou XD, Geng RX, Zhou CH. Bioorg Med Chem Lett, 2013, 23: 1008–1012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (21672173, 21372186), Research Fund for International Young Scientists from International (Regional) Cooperation and Exchange Program (81350110523), Chongqing Special Foundation for Postdoctoral Research Proposal (Xm2014127, Xm2016039), and Fundamental Research Funds for the Central Universities (XDJK2016E059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Mei Lin or Cheng-He Zhou.

Electronic supplementary material

11426_2016_9009_MOESM1_ESM.pdf

Design, synthesis and biological evaluation of amino organophosphorus imidazoles as a new type of potential antimicrobial agents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, WW., Rasheed, S., Tangadanchu, V. et al. Design, synthesis and biological evaluation of amino organophosphorus imidazoles as a new type of potential antimicrobial agents. Sci. China Chem. 60, 769–785 (2017). https://doi.org/10.1007/s11426-016-9009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9009-6

Keywords

Navigation