Skip to main content
Log in

Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices

  • Reviews
  • Special Topic · Electrochromics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and environmental pollution in society today. In this review, we explain the operation principles of electrochromic energy storage devices including electrochromic supercapacitors, electrochromic batteries, and the photoelectrochromic devices. Furthermore, the material candidates and structure types of these multifunctional devices are discussed in detail. The major challenges of these devices along with a further outlook are highlighted at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mortimer RJ. Annu Rev Mater Res, 2011, 41: 241–268

    Article  CAS  Google Scholar 

  2. Chandrasekhar P, Zay BJ, Birur GC, Rawal S, Pierson EA, Kauder L, Swanson T. Adv Funct Mater, 2002, 12: 95-103

    Article  CAS  Google Scholar 

  3. Andersson Ersman P, Kawahara J, Berggren M. Org Electron, 2013, 14: 3371–3378

    Article  CAS  Google Scholar 

  4. Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR. ACS Appl Mater Interfaces, 2015, 7: 1413–1421

    Article  CAS  Google Scholar 

  5. Svensson JSEM, Granqvist CG. Solar Energy Mater, 1984, 11: 29–34

    Article  CAS  Google Scholar 

  6. Tong Z, Zhang X, Lv H, Li N, Qu H, Zhao J, Li Y, Liu XY. Adv Mater Interfaces, 2015, 2: 1500230

    Article  CAS  Google Scholar 

  7. Llordés A, Garcia G, Gazquez J, Milliron DJ. Nature, 2013, 500: 323–326

    Article  CAS  Google Scholar 

  8. Karlsson J. Control system and energy saving potential for switchable windows. In: Proceedings of the Seventh International IBPSA Conference. Rio de Janeiro, 2001

  9. Tavares P, Bernardo H, Gaspar A, Martins A. Solar Energy, 2016, 134: 236–250

    Article  Google Scholar 

  10. Granqvist CG. Sol Energ Mat Sol C, 2012, 99: 1–13

    Article  CAS  Google Scholar 

  11. Deb SK. Sol Energ Mat Sol C, 2008, 92: 245–258

    Article  CAS  Google Scholar 

  12. Amb CM, Dyer AL, Reynolds JR. Chem Mater, 2011, 23: 397–415

    Article  CAS  Google Scholar 

  13. Thakur VK, Ding G, Ma J, Lee PS, Lu X. Adv Mater, 2012, 24: 4071–4096

    Article  CAS  Google Scholar 

  14. Wei D, Scherer MRJ, Bower C, Andrew P, Ryhänen T, Steiner U. Nano Lett, 2012, 12: 1857–1862

    Article  CAS  Google Scholar 

  15. Cai G, Darmawan P, Cui M, Wang J, Chen J, Magdassi S, Lee PS. Adv Energy Mater, 2016, 6: 1501882

    Article  CAS  Google Scholar 

  16. Wang J, Zhang L, Yu L, Jiao Z, Xie H, Lou XWD, Wei Sun X. Nat Commun, 2014, 5: 4921

    Article  CAS  Google Scholar 

  17. Bechinger C, Ferrere S, Zaban A, Sprague J, Gregg BA. Nature, 1996, 383: 608–610

    Article  CAS  Google Scholar 

  18. Wu JJ, Hsieh MD, Liao WP, Wu WT, Chen JS. ACS Nano, 2009, 3: 2297–2303

    Article  CAS  Google Scholar 

  19. Cannavale A, Manca M, De Marco L, Grisorio R, Carallo S, Suranna GP, Gigli G. ACS Appl Mater Interfaces, 2014, 6: 2415–2422

    Article  CAS  Google Scholar 

  20. Wu X, Zheng J, Xu C. Electrochim Acta, 2016, 191: 902–907

    Article  CAS  Google Scholar 

  21. Tong Z, Hao J, Zhang K, Zhao J, Su BL, Li Y. J Mater Chem C, 2014, 2: 3651–3658

    Article  CAS  Google Scholar 

  22. Tong Z, Yang H, Na L, Qu H, Zhang X, Zhao J, Li Y. J Mater Chem C, 2015, 3: 3159–3166

    Article  CAS  Google Scholar 

  23. Tong Z, Li N, Lv H, Tian Y, Qu H, Zhang X, Zhao J, Li Y. Sol Energ Mat Sol C, 2016, 146: 135–143

    Article  CAS  Google Scholar 

  24. Tong Z, Xu H, Liu G, Zhao J, Li Y. Electrochem Commun, 2016, 69: 46–49

    Article  CAS  Google Scholar 

  25. Zhang J, Tu J, Xia X, Wang X, Gu C. J Mater Chem, 2011, 21: 5492–5498

    Article  CAS  Google Scholar 

  26. Xia X, Chao D, Qi X, Xiong Q, Zhang Y, Tu J, Zhang H, Fan HJ. Nano Lett, 2013, 13: 4562–4568

    Article  CAS  Google Scholar 

  27. Tong Z, Lv H, Zhang X, Yang H, Tian Y, Li N, Zhao J, Li Y. Sci Rep, 2015, 5: 16864

    Article  CAS  Google Scholar 

  28. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL. Nano Lett, 2014, 14: 731–736

    Article  CAS  Google Scholar 

  29. Shulga YM, Baskakov SA, Smirnov VA, Shulga NY, Belay KG, Gutsev GL. J Power Sources, 2014, 245: 33–36

    Article  CAS  Google Scholar 

  30. Xia X, Tu J, Zhang Y, Mai Y, Wang X, Gu C, Zhao X. RSC Adv, 2012, 2: 1835–1841

    Article  CAS  Google Scholar 

  31. Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J. ACS Appl Mater Interfaces, 2013, 5: 8790–8795

    Article  CAS  Google Scholar 

  32. Erlandsson O, Lindvall J, Toan NN, Hung NV, Bich VT, Dinh NN. Phys Stat Sol (a), 1993, 139: 451–457

    Article  CAS  Google Scholar 

  33. Garcia-Lobato MA, Martinez AI, Perry DL, Castro-Roman M, Zarate RA, Escobar-Alarcon L. Sol Energ Mat Sol C, 2011, 95: 751–758

    Article  CAS  Google Scholar 

  34. Augustyn V, Simon P, Dunn B. Energy Environ Sci, 2014, 7: 1597–1614

    Article  CAS  Google Scholar 

  35. Meng Y, Wang K, Zhang Y, Wei Z. Adv Mater, 2013, 25: 6985–6990

    Article  CAS  Google Scholar 

  36. Tong Z, Lv H, Zhao J, Li Y. Chin J Polym Sci, 2014, 32: 1040–1051

    Article  CAS  Google Scholar 

  37. Tong Z, Yang Y, Wang J, Zhao J, Su BL, Li Y. J Mater Chem A, 2014, 2: 4642–4651

    Article  CAS  Google Scholar 

  38. Xia X, Tu J, Zhang Y, Wang X, Gu C, Zhao X, Fan HJ. ACS Nano, 2012, 6: 5531–5538

    Article  CAS  Google Scholar 

  39. Zhou D, Shi F, Xie D, Wang DH, Xia XH, Wang XL, Gu CD, Tu JP. J Colloid Interf Sci, 2016, 465: 112–120

    Article  CAS  Google Scholar 

  40. Sun P, Deng Z, Yang P, Yu X, Chen Y, Liang Z, Meng H, Xie W, Tan S, Mai W. J Mater Chem A, 2015, 3: 12076–12080

    Article  CAS  Google Scholar 

  41. Cong S, Tian Y, Li Q, Zhao Z, Geng F. Adv Mater, 2014, 26: 4260–4267

    Article  CAS  Google Scholar 

  42. Shen L, Du L, Tan S, Zang Z, Zhao C, Mai W. Chem Commun, 2016, 52: 6296–6299

    Article  CAS  Google Scholar 

  43. Cai G, Tu J, Zhou D, Zhang J, Xiong Q, Zhao X, Wang X, Gu C. J Phys Chem C, 2013, 117: 15967–15975

    Article  CAS  Google Scholar 

  44. Reddy BN, Kumar PN, Deepa M. ChemPhysChem, 2015, 16: 377–389

    Article  CAS  Google Scholar 

  45. Zhu M, Huang Y, Huang Y, Meng W, Gong Q, Li G, Zhi C. J Mater Chem A, 2015, 3: 21321–21327

    Article  CAS  Google Scholar 

  46. Yang P, Sun P, Du L, Liang Z, Xie W, Cai X, Huang L, Tan S, Mai W. J Phys Chem C, 2015, 119: 16483–16489

    Article  CAS  Google Scholar 

  47. Tian Y, Cong S, Su W, Chen H, Li Q, Geng F, Zhao Z. Nano Lett, 2014, 14: 2150–2156

    Article  CAS  Google Scholar 

  48. Yang P, Sun P, Chai Z, Huang L, Cai X, Tan S, Song J, Mai W. Angew Chem Int Ed, 2014, 53: 11935–11939

    Article  CAS  Google Scholar 

  49. Scherer MRJ, Li L, Cunha PMS, Scherman OA, Steiner U. Adv Mater, 2012, 24: 1217–1221

    Article  CAS  Google Scholar 

  50. Jeyalakshmi K, Purushothaman KK, Muralidharan G. Philos Mag, 2013, 93: 1490–1499

    Article  CAS  Google Scholar 

  51. Wang Y, Cao G. Electrochim Acta, 2006, 51: 4865–4872

    Article  CAS  Google Scholar 

  52. Chernova NA, Roppolo M, Dillon AC, Whittingham MS. J Mater Chem, 2009, 19: 2526–2552

    Article  CAS  Google Scholar 

  53. Scherer MRJ, Steiner U. Nano Lett, 2013, 13: 3005–3010

    Article  CAS  Google Scholar 

  54. Cai G, Wang X, Cui M, Darmawan P, Wang J, Eh ALS, Lee PS. Nano Energy, 2015, 12: 258–267

    Article  CAS  Google Scholar 

  55. Chen Y, Wang Y, Sun P, Yang P, Du L, Mai W. J Mater Chem A, 2015, 3: 20614–20618

    Article  CAS  Google Scholar 

  56. Lee SH, Tracy CE, Yan Y, Pitts JR, Deb SK. Electrochem Solid-State Lett, 2005, 8: A188

    Article  CAS  Google Scholar 

  57. Beaujuge PM, Reynolds JR. Chem Rev, 2010, 110: 268–320

    Article  CAS  Google Scholar 

  58. Wang K, Wu H, Meng Y, Wei Z. Small, 2014, 10: 14–31

    Article  CAS  Google Scholar 

  59. Chen X, Lin H, Deng J, Zhang Y, Sun X, Chen P, Fang X, Zhang Z, Guan G, Peng H. Adv Mater, 2014, 26: 8126–8132

    Article  CAS  Google Scholar 

  60. Wang K, Wu H, Meng Y, Zhang Y, Wei Z. Energy Environ Sci, 2012, 5: 8384–8389

    Article  CAS  Google Scholar 

  61. Liu DY, Reynolds JR. ACS Appl Mater Interfaces, 2010, 2: 3586–3593

    Article  CAS  Google Scholar 

  62. Dyer AL, Grenier CRG, Reynolds JR. Adv Funct Mater, 2007, 17: 1480–1486

    Article  CAS  Google Scholar 

  63. Yuksel R, Cevher SC, Cirpan A, Toppare L, Unalan HE. J Electrochem Soc, 2015, 162: A2805–A2810

    Article  CAS  Google Scholar 

  64. Huguenin F, dos Santos DS, Bassi A, Nart FC, Oliveira ON. Adv Funct Mater, 2004, 14: 985–991

    Article  CAS  Google Scholar 

  65. Huang LM, Wen TC, Gopalan A. Electrochim Acta, 2006, 51: 3469–3476

    Article  CAS  Google Scholar 

  66. Min H, Mac Donald AH. Phys Rev Lett, 2009, 103: 067402

    Article  CAS  Google Scholar 

  67. Polat EO, Kocabas C. Nano Lett, 2013, 13: 5851–5857

    Article  CAS  Google Scholar 

  68. Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday JN, Drew HD, Fuhrer MS, Hu L. Nat Commun, 2014, 5: 4224

    CAS  Google Scholar 

  69. Tuukkanen S, Välimäki M, Lehtimäki S, Vuorinen T, Lupo D. Sci Rep, 2016, 6: 22967

    Article  CAS  Google Scholar 

  70. Heckner K. Solid State Ion, 2002, 152-153: 899–905

    Article  CAS  Google Scholar 

  71. Kang B, Ceder G. Nature, 2009, 458: 190–193

    Article  CAS  Google Scholar 

  72. Zhang H, Yu X, Braun PV. Nat Nanotech, 2011, 6: 277–281

    Article  CAS  Google Scholar 

  73. Zhao J, Tian Y, Wang Z, Cong S, Zhou D, Zhang Q, Yang M, Zhang W, Geng F, Zhao Z. Angew Chem Int Ed, 2016, 55: 7161–7165

    Article  CAS  Google Scholar 

  74. Giannuzzi R, Manca M, De Marco L, Belviso MR, Cannavale A, Sibillano T, Giannini C, Cozzoli PD, Gigli G. ACS Appl Mater Interfaces, 2014, 6: 1933–1943

    Article  CAS  Google Scholar 

  75. Nagai H, Hara H, Enomoto M, Mochizuki C, Honda T, Takano I, Sato M. Funct Mater Lett, 2013, 6: 1341001

    Article  CAS  Google Scholar 

  76. Chen L, Tseng K, Huang Y, Ho K. J New Mater Electrochem Syst, 2002, 5: 213–221

    CAS  Google Scholar 

  77. Tung T. Solid State Ion, 2003, 165: 257–267

    Article  CAS  Google Scholar 

  78. Deb SK, Lee SH, Edwin Tracy C, Roland Pitts J, Gregg BA, Branz HM. Electrochim Acta, 2001, 46: 2125–2130

    Article  CAS  Google Scholar 

  79. Malara F, Cannavale A, Carallo S, Gigli G. ACS Appl Mater Interfaces, 2014, 6: 9290–9297

    Article  CAS  Google Scholar 

  80. Xie Z, Jin X, Chen G, Xu J, Chen D, Shen G. Chem Commun, 2014, 50: 608–610

    Article  CAS  Google Scholar 

  81. Hauch A, Georg A, Baumgärtner S, Opara Krašovec U, Orel B. Electrochim Acta, 2001, 46: 2131–2136

    Article  CAS  Google Scholar 

  82. Pichot F. J Electrochem Soc, 1999, 146: 4324–4326

    Article  CAS  Google Scholar 

  83. Reddy BN, Mukkabla R, Deepa M, Ghosal P. RSC Adv, 2015, 5: 31422–31433

    Article  CAS  Google Scholar 

  84. Kumar PN, Narayanan R, Laha S, Deepa M, Srivastava AK. Sol Energ Mat Sol C, 2016, 153: 138–147

    Article  CAS  Google Scholar 

  85. Li Y, Hagen J, Haarer D. Synth Met, 1998, 94: 273–277

    Article  CAS  Google Scholar 

  86. Yu XF, Li YX, Zhu NF, Yang QB, Kalantar-zadeh K. Nanotechnology, 2007, 18: 015201

    Article  CAS  Google Scholar 

  87. Liao J, Ho K. J New Mater Electrochem Syst, 2005, 8: 37–47

    CAS  Google Scholar 

  88. Hsu CY, Lee KM, Huang JH, Justin Thomas KR, Lin JT, Ho KC. J Power Sources, 2008, 185: 1505–1508

    Article  CAS  Google Scholar 

  89. Wu CH, Hsu CY, Huang KC, Nien PC, Lin JT, Ho KC. Sol Energ Mat Sol C, 2012, 99: 148–153

    Article  CAS  Google Scholar 

  90. Yang S, Zheng J, Li M, Xu C. Sol Energ Mat Sol C, 2012, 97: 186–190

    Article  CAS  Google Scholar 

  91. Cannavale A, Manca M, Malara F, De Marco L, Cingolani R, Gigli G. Energy Environ Sci, 2011, 4: 2567–2574

    Article  CAS  Google Scholar 

  92. Chou JC, Shih PH, Hu JE, Liao YH, Chuang SW, Huang CH. IEEE Trans Nanotechnol, 2014, 13: 954–962

    Article  CAS  Google Scholar 

  93. Jiao Z, Song JL, Sun XW, Liu XW, Wang JM, Ke L, Demir HV. Sol Energ Mat Sol C, 2012, 98: 154–160

    Article  CAS  Google Scholar 

  94. Amasawa E, Sasagawa N, Kimura M, Taya M. Adv Energy Mater, 2014, 4: 1400379

    Article  CAS  Google Scholar 

  95. Hauch A, Georg A, Krasovec UO, Orel B. J Electrochem Soc, 2002, 149: H159–H163

    Article  CAS  Google Scholar 

  96. Leftheriotis G, Syrrokostas G, Yianoulis P. Solid State Ion, 2013, 231: 30–36

    Article  CAS  Google Scholar 

  97. Georg A, Georg A, Krašovec UO, Wittwer V. J New Mater Electrochem Syst, 2005, 8: 327–338

    Google Scholar 

  98. Georg A, Georg A, Opara Krašovec U. Thin Solid Films, 2006, 502: 246–251

    Article  CAS  Google Scholar 

  99. Krašovec UO, Georg A, Georg A, Wittwer V, Luther J, Topic M. Sol Energ Mat Sol C, 2004, 84: 369–380

    Article  CAS  Google Scholar 

  100. Hechavarría L, Mendoza N, Rincón ME, Campos J, Hu H. Sol Energ Mat Sol C, 2012, 100: 27–32

    Article  CAS  Google Scholar 

  101. Santa-Nokki H, Kallioinen J, Korppi-Tommola J. Photochem Photobiol Sci, 2007, 6: 63–66

    Article  CAS  Google Scholar 

  102. Leftheriotis G, Syrrokostas G, Yianoulis P. Sol Energ Mat Sol C, 2010, 94: 2304–2313

    Article  CAS  Google Scholar 

  103. De Filpo G, Mormile S, Nicoletta FP, Chidichimo G. J Power Sources, 2010, 195: 4365–4369

    Article  CAS  Google Scholar 

  104. Krašovec UO, Topic M, Georg A, Georg A, Dražic G. J Sol-Gel Sci Technol, 2005, 36: 45–52

    Article  CAS  Google Scholar 

  105. Leftheriotis G, Syrrokostas G, Yianoulis P. Sol Energ Mat Sol C, 2012, 96: 86–92

    Article  CAS  Google Scholar 

  106. Bella F, Leftheriotis G, Griffini G, Syrrokostas G, Turri S, Grätzel M, Gerbaldi C. Adv Funct Mater, 2016, 26: 1127–1137

    Article  CAS  Google Scholar 

  107. Syrrokostas G, Leftheriotis G, Yianoulis P. Solid State Ion, 2015, 277: 11–22

    Article  CAS  Google Scholar 

  108. Cannavale A, Fiorito F, Resta D, Gigli G. Energ Buildings, 2013, 65: 137–145

    Article  Google Scholar 

  109. Huang LM, Hu CW, Liu HC, Hsu CY, Chen CH, Ho KC. Sol Energ Mat Sol C, 2012, 99: 154–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51572058, 91216123, 51174063, 51502057), the Natural Science Foundation of Heilongjiang Province (E201436), the International Science & Technology Cooperation Program of China (2013DFR10630, 2015DFE52770) and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20132302110031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Li.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Z., Tian, Y., Zhang, H. et al. Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Sci. China Chem. 60, 13–37 (2017). https://doi.org/10.1007/s11426-016-0283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0283-0

Keywords

Navigation