Skip to main content
Log in

Selective detection of mercury(II) and methylmercury(II) via coordination-induced emission of a small-molecule probe

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Mercury is one of the major toxic pollutants and has many adverse effects on human health. The main mercury species in the environment or in living organisms are inorganic mercuric ion (Hg2+) and organic methylmercury (CH3Hg+). Detection of the two mercury ions is a particularly active topic in the molecular sensing field during the past decade. However, efficient sensors that can sensitively detect and discriminate the two species are rare. In this work, we adopt the concept of restriction of intramolecular rotations which is the basis of aggregation induced emission, and design a molecular probe with pyridyl group as the chelating unit and 1,8-naphthalimide as the fluorescent unit for the detection of both Hg2+ and CH3Hg+. When the probe is free in solution, it exhibits weak fluorescence because free intramolecular rotations of the 1,8-naphthalimide moieties non-radiatively annihilate its excited state. However, upon coordination with Hg2+ or CH3Hg+, the rotation of 1,8-naphthalimide moieties would be restricted due to the chelation between 1,8-naphthalimide and Hg2+ or CH3Hg+, leading to significantly enhanced fluorescent emission. The response induced by Hg2+ is much stronger than CH3Hg+; but for specific detection of CH3Hg+, we introduced a T-rich DNA fragment which could completely mask Hg2+ in solution. Furthermore, we have employed the sensor for confocal imaging of Hg2+ and CH3Hg+in immobilized cells. We expect the probe design tactics can be generally useful for sensing many other analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Environ Toxicol, 2003, 18: 149–175

    Article  CAS  Google Scholar 

  2. Poulain AJ, Barkay T. Science, 2013, 339: 1280–1281

    Article  CAS  Google Scholar 

  3. WHO. Guideline Levels for Methylmercury in Fish [S], CAC/GL7-1991; WHO: Geneva, Switzerland, 1991; p 1

    Google Scholar 

  4. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi NY, Tikriti S, Dhahir HI, Clarkson TW, Smith JC, Doherty RA. Science, 1973, 181: 230–241

    Article  CAS  Google Scholar 

  5. Eto K, Tokunaga H, Nagashima K, Takeuchi T. Toxicologic Pathol, 2002, 30: 714–722

    Article  CAS  Google Scholar 

  6. Erxleben H, Ruzicka J. Anal Chem, 2005, 77: 5124–5128

    Article  CAS  Google Scholar 

  7. Zhu Z, Chan GCY, Ray SJ, Zhang X, Hieftje GM. Anal Chem, 2008, 80: 7043–7050

    Article  CAS  Google Scholar 

  8. Rodrigues JL, Torres DP, de Oliveira Souza VC, Batista BL, de Souza SS, Curtius AJ, Barbosa Jr F. J Anal At Spectrom, 2009, 24: 1414–1420

    Article  CAS  Google Scholar 

  9. Li Y, Yin Y, Liu G, Cai Y. Advances in Speciation Analysis of Mercury in the Environment. In Environmental Chemistry and Toxicology of Mercury; Liu G, Cai Y, Driscoll NO, Eds, John Wiley & Sons: Hoboken, NJ, 2012; pp 15–58

  10. Guo X, Qian X, Jia L. J Am Chem Soc, 2004, 126: 2272–2273

    Article  CAS  Google Scholar 

  11. Yang YK, Yook KJ, Tae J. J Am Chem Soc, 2005, 127: 16760–16761

    Article  CAS  Google Scholar 

  12. Nolan EM, Lippard SJ. J Am Chem Soc, 2007, 129: 5910–5918

    Article  CAS  Google Scholar 

  13. Ando S, Koide K. J Am Chem Soc, 2011, 133: 2556–2566

    Article  CAS  Google Scholar 

  14. Kim IB, Bunz UHF. J Am Chem Soc, 2006, 128: 2818–2819

    Article  CAS  Google Scholar 

  15. Dave N, Chan MY, Huang PJJ, Smith BD, Liu J. J Am Chem Soc, 2010, 132: 12668–12673

    Article  CAS  Google Scholar 

  16. Lee JS, Han MS, Mirkin CA. Angew Chem Int Ed, 2007, 46: 4093–4096

    Article  CAS  Google Scholar 

  17. Xue X, Wang F, Liu X. J Am Chem Soc, 2008, 130: 3244–3245

    Article  CAS  Google Scholar 

  18. Li D, Wieckowska A, Willner I. Angew Chem Int Ed, 2008, 47: 3927–3931

    Article  CAS  Google Scholar 

  19. Song C, Yang B, Yang Y, Wang L. Sci China Chem, 2016, 59: 16–29

    Article  CAS  Google Scholar 

  20. Ono A, Togashi H. Angew Chem Int Ed, 2004, 43: 4300–4302

    Article  CAS  Google Scholar 

  21. Liu J, Lu Y. Angew Chem Int Ed, 2007, 46: 7587–7590

    Article  CAS  Google Scholar 

  22. Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin DM. Angew Chem Int Ed, 2008, 47: 4346–4350

    Article  CAS  Google Scholar 

  23. Chen P, He C. J Am Chem Soc, 2004, 126: 728–729

    Article  CAS  Google Scholar 

  24. Wang Y, Cui Y, Liu R, Gao F, Gao L, Gao X. Sci China Chem, 2015, 58: 819–824

    Article  CAS  Google Scholar 

  25. Yang YK, Ko SK, Shin I, Tae J. Org Biomol Chem, 2009, 7: 4590–4593

    Article  CAS  Google Scholar 

  26. Santra M, Ryu D, Chatterjee A, Ko S-K, Shin I, Ahn KA. Chem Commun, 2009, 2115–2117

    Google Scholar 

  27. Lin YH, Tseng WL. Anal Chem, 2010, 82: 9194–9200

    Article  CAS  Google Scholar 

  28. Climent E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Rurack K, Amorós P. Angew Chem Int Ed, 2009, 48: 8519–8522

    Article  CAS  Google Scholar 

  29. Liu Y, Chen M, Cao T, Sun Y, Li C, Liu Q, Yang T, Yao L, Feng W, Li F. J Am Chem Soc, 2013, 135: 9869–9876

    Article  CAS  Google Scholar 

  30. Cho ES, Kim J, Tejerina B, Hermans TM, Jiang H, Nakanishi H, Yu M, Patashinski AZ, Glotzer SC, Stellacci F, Grzybowski BA. Nat Mater, 2012, 11: 978–985

    Article  CAS  Google Scholar 

  31. Deng L, Li Y, Yan X, Xiao J, Ma C, Zheng J, Liu S, Yang R. Anal Chem, 2015, 87: 2452–2458

    Article  CAS  Google Scholar 

  32. Zhang Z, Zhang B, Qian X, Li Z, Xu Z, Yang Y. Anal Chem, 2014, 86: 11919–11924

    Article  CAS  Google Scholar 

  33. Nolan EM, Lippard SJ. Chem Rev, 2008, 108: 3443–3480

    Article  CAS  Google Scholar 

  34. Hancock RD. Chem Soc Rev, 2013, 42: 1500–1524

    Article  CAS  Google Scholar 

  35. Liu Z, Zhang C, Li Y, Wu Z, Qian F, Yang X, He W, Gao X, Guo Z. Org Lett, 2009, 11: 795–798

    Article  CAS  Google Scholar 

  36. Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388

    Article  CAS  Google Scholar 

  37. Wanichacheva N, Prapawattanapol N, Sanghiran Lee V, Grudpan K, Petsom A. J Luminescence, 2013, 134: 686–690

    Article  CAS  Google Scholar 

  38. Wen S, Zeng T, Liu L, Zhao K, Zhao Y, Liu X, Wu HC. J Am Chem Soc, 2011, 133: 18312–18317

    Article  CAS  Google Scholar 

  39. Zeng T, Li T, Li Y, Liu L, Wang X, Liu Q, Zhao Y, Wu HC. Nanoscale, 2014, 6: 8579–8584

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 03: Gaussian, Inc., Wallingford, CT. 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chen Wu.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yao, Z., Li, W. et al. Selective detection of mercury(II) and methylmercury(II) via coordination-induced emission of a small-molecule probe. Sci. China Chem. 59, 1651–1657 (2016). https://doi.org/10.1007/s11426-016-0137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0137-y

Keywords

Navigation