Skip to main content
Log in

Synthesis of dispersed long single-crystalline TiO2 paste and its application in DSSC as a scattering layer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

TiO2 nanowire (NW) is one of the potential scattering layer materials in dye-sensitized solar cells (DSSCs) owing to its fast electron conductivity and excellent light scattering property resulting from its one-dimensional (1D) morphology. However, TiO2 NWs used as scattering layers in previous works were either aggregated or shortened into shuttles that cannot use their unique 1D properties. In this paper, we present the preparation of a well-dispersed long NW paste (exceeding 1 mm) by a mild method and used as a scattering layer in DSSC. The paste achieved a photoconversion efficiency of 5.73% and an efficiency enhancement of 12% compared with commercial scattering layer (P200 paste). Compared with the DSSC without a scattering layer, an efficiency enhancement of 54.9% was achieved. Also, the largest efficiency of 6.89% was obtained after optimization of photoanode thickness. The photoanodes were investigated through dye desorbed experiments and transmission spectra, which suggested that P25 nanoparticles with the as-prepared NW scattering layer loaded more dye than those with P200 paste. These results indicate that well-dispersed long NW paste has a potential application in scattering layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oregan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740

    Article  CAS  Google Scholar 

  2. Yella A, Lee HW, Tsao HN, Yi CY, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Gratzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334: 629–634

    Article  CAS  Google Scholar 

  3. Lv MQ, Zheng DJ, Ye MD, Xiao J, Guo WX, Lai YK, Sun L, Lin CJ, Zuo J. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency fo dye-sensitized solar cells. Energy Environ Sci, 2013, 6: 1615–1622

    Article  CAS  Google Scholar 

  4. Wu WQ, Xu YF, Su CY, Kuang DB. Ultra-long anatase TiO2 nanowire arrays with multi-layered configuration on FTO glass for high-efficiency dye-sensitized solar cells. Energy Environ Sci, 2013, 10: 1039–1044

    Google Scholar 

  5. Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB. Dyesensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping and transfer of electrons. J Am Chem Soc, 2008, 130: 13364–13372

    Article  CAS  Google Scholar 

  6. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215–218

    Article  CAS  Google Scholar 

  7. Law M, Greene LE, Johnson JC, Saykally R, Yang PD. Nanowire dye-sensitized solar cells. Nature Mater, 2005, 4: 455–459

    Article  CAS  Google Scholar 

  8. Tan B, Wu YY. Sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J Phys Chem B, 2006, 110: 15932–15938

    Article  CAS  Google Scholar 

  9. Wu JJ, Chen GR, Lu CC, Wu WT, Chen JS. Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells. Nanotechnology, 2008, 19: 105702

    Article  Google Scholar 

  10. Fan K, Zhang W, Peng TY, Chen JN, Yang F. Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved effciency. J Phys Chem C, 2011, 115: 17213–17219

    Article  CAS  Google Scholar 

  11. Sun PP, Zhang XT, Wang CH, Wei YG, Wang LL, Liu YC. Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: enhanced cell performance via the rutile-anatase heterojunction. J Mater Chem A, 2013, 1: 3309–3314

    Article  CAS  Google Scholar 

  12. Ai G, Sun WT, Zhang YL, Peng LM. Nanoparticle and nanorod TiO2 composite photoelectrodes with improved performance. Chem Commun, 2011, 47: 6608–6610

    Article  CAS  Google Scholar 

  13. Wang XY, Liu Y, Zhou X, Li BJ, Wang H, Zhao WX, Huang H, Liang CL, Yu X, Liu Z, Shen H. Synthesis of long TiO2 nanowire arrays with high surface areas via synergistic assembly route for highly efficient dye-sensitized solar cells. J Mater Chem, 2012, 22: 17531–17538

    Article  CAS  Google Scholar 

  14. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CR, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol A. Band alignment of rutile and anatase TiO2. Nature Mater, 2013, 12: 798–801

    Article  CAS  Google Scholar 

  15. Cheng CW, Hong JF. Branched nanowires: synthesis and energy applications. Nano Today, 2012, 7: 327–343

    Article  CAS  Google Scholar 

  16. Bierman MJ, Jin S. Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci, 2009, 2: 1050–1059

    Article  CAS  Google Scholar 

  17. Hore S, Vetter C, Kern R, Smit H, Hinsch A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol Energ Mat Sol C, 2006, 90: 1176–1188

    Article  CAS  Google Scholar 

  18. Koo HJ, Park J, Yoo B, Yoo K, Kim K, Park NG. Size-dependent scattering efficiency in dye-sensitized solar cell. Inorg Chim Acta, 2008, 361: 677–683

    Article  CAS  Google Scholar 

  19. Huang F, Chen D, Zhang XL, Caruso RA, Cheng YB. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv Funct Mater, 2010, 20: 1301–1305

    Article  CAS  Google Scholar 

  20. Yu J, Li QL, Shu Z. Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim Acta, 2011, 56: 6293–6298

    Article  CAS  Google Scholar 

  21. Yang L, Lin Y, Jia JG, Xiao XR, Li XP, Zhou XW. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. J Power Sources, 2008, 182: 370–376

    Article  CAS  Google Scholar 

  22. Liu ZH, Su XJ, Hou GL, Bi S, Xiao Z, Jia HP. Enhanced performance for dye-sensitized solar cells based on spherical TiO2 nanorod-aggregate light-scattering layer. J Power Sources, 2012, 218: 280–285

    Article  CAS  Google Scholar 

  23. Liang J, Zhang GM, Xia HR, Sun WT. Room-temperature fabrication of dual-functional hierarchical TiO2 spheres for dye-sensitized solar cells. RSC Adv, 2014, 4: 12649–12652

    Article  CAS  Google Scholar 

  24. Feng YM, Zhu JH, Jiang J, Wang WW, Meng GX, Wu F, Gao YL, Huang XT. Building smart TiO2 nanorod networks in/on the film of P25 nanoparticles for high-efficiency dye sensitized solar cells. RSC Adv, 2014, 4: 12944–12949

    Article  CAS  Google Scholar 

  25. Muskens OL, Rivas JG, Algra RE, Bakkers EPAM, Lagendijk A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett, 2008, 8: 2638–2642

    Article  CAS  Google Scholar 

  26. Strudley T, Zehender T, Blejean C, Bakkers EPAM, Muskens OL. Mesoscopic light transport by very strong collective multiple scattering in nanowire mats. Nature Photon, 2013, 7: 413–418

    Article  CAS  Google Scholar 

  27. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Gratzel M. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells. Prog Photovolt: Res Appl, 2007, 15: 603–612

    Article  CAS  Google Scholar 

  28. Wang ZS, Kawauchi H, Kashlma T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordin Chem Rev, 2004, 248: 1381–1389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Sun or Lianmao Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wen, N., Xia, H. et al. Synthesis of dispersed long single-crystalline TiO2 paste and its application in DSSC as a scattering layer. Sci. China Chem. 58, 1501–1507 (2015). https://doi.org/10.1007/s11426-015-5356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5356-3

Keywords

Navigation