Skip to main content
Log in

Asphaltene precipitation modeling through ACE reaping of scaling equations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Precipitation and deposition of asphaltene have undesirable effects on the petroleum industry by increasing operational costs due to reduction of well productivity as well as catalyst poisoning. Herein we propose a reliable model for quantitative estimation of asphaltene precipitation. Scaling equation is the most powerful and popular model for accurate prediction of asphaltene precipitated out of solution in crudes without regard to complex nature of asphaltene. We employed a new mathematical-based approach known as alternating conditional expectation (ACE) technique for combining results of different scaling models in order to increase the accuracy of final estimation. Outputs of three well-known scaling equations, including Rassamdana (RE), Hu (HU), and Ashoori (AS), are input to ACE and the final output is produced through a nonlinear combination of scaling equations. The proposed methodology is capable of significantly increasing the precision of final estimation via a divide-and-conquer principle in which ACE functions as the combiner. Results indicate the superiority of the proposed method compared with other individual scaling equation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gholami A, Asoodeh M, Bagheripour P. Fuzzy assessment of asphaltene stability in crude oils. J Dispersion Sci Technol, 2014, 35: 556–563

    Article  CAS  Google Scholar 

  2. Gholami A, Asoodeh M, Bagheripour P. Smart determination of difference index for asphaltene stability evaluation. J Dispersion Sci Technol, 2014, 35: 572–576

    Article  CAS  Google Scholar 

  3. Ghatee MH, Hemmateenejad B, Sedghamiz T, Khosousi T, Ayatollahi S, Seiedi O, Sayyad Amin J. Multivariate curve resolution alternating least-squares as a tool for analyzing crude oil extracted asphaltene samples. Energy Fuels, 2012, 26: 5663–5671

    Article  CAS  Google Scholar 

  4. Kurup AS, Wang J, Subramani HJ, Buckley J, Creek JL, Chapman WJ. Revisiting asphaltene deposition tool (ADEPT): field application. Energy Fuels, 2012, 26: 5702–5710

    Article  CAS  Google Scholar 

  5. Kord S, Miri R, Ayatollahi S, Escrochi M. Asphaltene deposition in carbonate rocks: experimental investigation and numerical simulation. Energy Fuels, 2012, 26: 6186–6199

    Article  CAS  Google Scholar 

  6. Ahmadi MA, Golshadi M. Neural network based swarm concept for prediction asphaltene precipitation due to natural depletion. J Pet Sci Eng, 2012, 98–99: 40–49

    Article  Google Scholar 

  7. Ahmadi MA, Shadizadeh SR. New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept. Fuel, 2012, 102: 716–723

    Article  CAS  Google Scholar 

  8. Tavakkoli M, Masihi M, Ghazanfari MH, Kharrat R. An improvement of thermodynamic micellization model for of asphaltene precipitation during gas injection in heavy crude prediction. Fluid Phase Equilib, 2011, 308: 153–163

    Article  CAS  Google Scholar 

  9. Jafari Behbahani T, Ghotbi C, Taghikhani V, Shahrabadi A. Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media: a novel experimental study and a modified model based on multilayer theory for asphaltene adsorption. Energy Fuels, 2012, 26: 5080–5091

    Article  Google Scholar 

  10. Moradi S, Dabir B, Rashtchian D, Mahmoudi B. Effect of miscible nitrogen injection on instability, particle size distribution, and fractal structure of asphaltene aggregates. J Dispersion Sci Technol, 2012, 33: 763–770

    Article  CAS  Google Scholar 

  11. Moradi S, Dabiri M, Dabir B, Rashtchian D, Emadi MA. Investigation of asphaltene precipitation in miscible gas injection processes: experimental study and modeling. Braz J Chem Eng, 2012, 29: 665–676

    Article  CAS  Google Scholar 

  12. Salahshoor K, Zakeri S, Mahdavi S, Kharrat R. Khalifeh M. Asphaltene deposition prediction using adaptive neuro-fuzzy models based on laboratory measurements. Fluid Phase Equilib, 2013, 337: 89–99

    Article  CAS  Google Scholar 

  13. Lawal KA, Crawshaw JP, Boek ES, Vesovik V. Experimental investigation of asphaltene deposition in capillary flow. Energy Fuels, 2012, 26: 2145–2153

    Article  CAS  Google Scholar 

  14. Abu Tarboush BJ, Husein MM. Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles. J Colloid Interface Sci, 2012, 378: 64–69

    Article  CAS  Google Scholar 

  15. Punnapala S, Vargas FM. Revisiting the PC-SAFT characterization procedure for an improved asphaltene precipitation prediction. Fuel, 2013, 108: 417–429

    Article  CAS  Google Scholar 

  16. Shirani B, Nikazar M, Mousavi-Dehghani SA. Prediction of asphaltene phase behavior in live oil with CPA equation of state. Fuel, 2012, 97: 89–96

    Article  CAS  Google Scholar 

  17. Asoodeh M, Gholami A, Bagheripour P. Renovating scaling equation through hybrid genetic algorithm-pattern search tool for asphaltene precipitation modeling. J Dispersion Sci Technol, 2014, 35: 607–611

    Article  CAS  Google Scholar 

  18. Shirani B, Nikazar M, Naseri A, Mousavi-Dehghani SA. Modeling of asphaltene precipitation utilizing Association Equation of State. Fuel, 2012, 93: 59–66

    Article  CAS  Google Scholar 

  19. Asoodeh M, Gholami A, Bagheripour P. Asphaltene precipitation of titration data modeling through committee machine with stochastically optimized fuzzy logic and optimized neural network. Fluid Phase Equilib, 2014, 364: 67–74

    Article  CAS  Google Scholar 

  20. Nakhli H, Alizadeh A, Sadeghi Moghadam M, Afshari S, Kharrat R, Ghazanfari MH. Monitoring of asphaltene precipitation: experimental and modeling study. J Pet Sci Eng, 2011, 78: 384–395

    Article  CAS  Google Scholar 

  21. Naimi SR, Gholami A, Asoodeh M. Prediction of crude oil asphaltene precipitation using support vector regression. J Dispersion Sci Technol, 2014, 35: 518–523

    Article  CAS  Google Scholar 

  22. Panuganti SR, Vargas FM, Gonzalez DL, Kurup AS, Chapman WG. PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior. Fuel, 2012, 93: 658–669

    Article  CAS  Google Scholar 

  23. Wu J, Prausnitz JM, Firoozabadi A. Molecular-thermodynamic framework for asphaltene-oil equilibria. AIChE J, 1998, 44: 1188–1199

    Article  CAS  Google Scholar 

  24. Mansoori GA. Modeling of asphaltene and other heavy organic depositions. J Pet Sci Eng, 1997, 17: 101–111

    Article  CAS  Google Scholar 

  25. Rassamdana H, Dabir B, Nematy M, Farhani M, Sahimi M. Asphalt flocculation and deposition: I. the onset of precipitation. AIChE J, 1996, 42: 10–22

    Article  CAS  Google Scholar 

  26. Rassamdana H, Farhani M, Dabir B, Mozaffarian M, Sahimi M. Asphalt flocculation and deposition. V. Phase behavior in miscible and immiscible injections. Energy Fuels, 1999, 13: 176–187

    Article  CAS  Google Scholar 

  27. Hu YF, Guo TM. Effect of temperature and molecular weight of n-alkane precipitants on asphaltene precipitation. Fluid Phase Equilib, 2001, 192: 13–25

    Article  CAS  Google Scholar 

  28. Ashoori S, Abedini A, Abedini R, Qorbani Nasheghi K. Comparison of scaling equation with neural network model for prediction of asphaltene precipitation. J Pet Sci Eng, 2010, 72: 186–194

    Article  CAS  Google Scholar 

  29. Breiman L, Friedman JH. Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc, 1985, 80: 580–598

    Article  Google Scholar 

  30. Hu YF, Chen GJ, Yang JT, Guo TM. A study on the application of scaling equation for asphaltene precipitation. Fluid Phase Equilib, 2000, 171: 181–195

    Article  CAS  Google Scholar 

  31. Tang X, Zhou J. Nonlinear relationship between the real exchange rate and economic fundamentals: evidence from China and Korea. J Int Money Finance, 2013, 32: 304–323

    Article  Google Scholar 

  32. Blanco M, Coello J, Maspoch S, Puigdomenech AR. Modelling of an environmental parameter by use of the alternating conditional expectation method. Chemom Intell Lab Syst, 1999, 46: 31–39

    Article  CAS  Google Scholar 

  33. Xue G, Datta-Gupta A, Valko P, Blasingame T. Optimal transformations for multiple regression: application to permeability estimation from well logs. SPE Formation Evaluation, 1996: 115–130

    Google Scholar 

  34. Eissa M, Shokir EM. CO2 oil minimum miscibility pressure model for impure and pure CO2 streams. J Pet Sci Eng, 2007, 58: 173–185

    Article  Google Scholar 

  35. Malallah A, Ghorbi R, Algharib M. Accurate estimation of the world crude oil PVT properties using graphical alternating conditional expectation. Energy Fuels, 2006, 20: 688–698

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Asoodeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, A., Moradi, S., Asoodeh, M. et al. Asphaltene precipitation modeling through ACE reaping of scaling equations. Sci. China Chem. 57, 1774–1780 (2014). https://doi.org/10.1007/s11426-014-5253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5253-1

Keywords

Navigation