Skip to main content
Log in

Loop formation and stability of self-avoiding polymer chains

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Using 3-dimensional Langevin dynamics simulations, we investigated the dynamics of loop formation of chains with excluded volume interactions, and the stability of the formed loop. The mean looping time τ l scales with chain length N and corresponding scaling exponent α increases linearly with the capture radius scaled by the Kuhn length a/l due to the effect of finite chain length. We also showed that the probability density function of the looping time is well fitted by a single exponential. Finally, we found that the mean unlooping time τ u hardly depends on chain length N for a given a/l and that the stability of a formed loop is enhanced with increasing a/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilemski G, Fixman M. Diffusion-controlled intrachain reactions of polymers. 1. Theory. J Chem Phys, 1974, 60: 866–877

    Article  CAS  Google Scholar 

  2. Wilemski G, Fixman M. Diffusion-controlled intrachain reactions of polymers. 2. J Chem Phys, 1974, 60: 878–890

    Article  CAS  Google Scholar 

  3. Doi M. Diffusion-controlled reaction of polymers. Chem Phys, 1975, 9: 455–466

    Article  CAS  Google Scholar 

  4. Szabo A, Schulten K, Schulten Z. First passage time approach to diffusion controlled reactions. J Chem Phys, 1980, 72: 4350–4357

    Article  CAS  Google Scholar 

  5. Fernández JLG, Rey A, Freire J, de Piérola IF. Cyclization dynamics of flexible polymers. Numerical results from Brownian trajectories. Macromolecules, 1990, 23: 2057–2061

    Article  Google Scholar 

  6. Rey A, Freire J. Numerical simulation of the cyclization dynamics for flexible chains with excluded volume. Macromolecules, 1991, 24: 4673–4678

    Article  CAS  Google Scholar 

  7. Friedman B, O’Shaughnessy B. Theory of polymer cyclization. Phys Rev A, 1989, 40: 5950–5959

    Article  CAS  Google Scholar 

  8. Friedman B, O’Shaughnessy B. Intermolecular reactions in dilute polymer solutions: nonexistence of diffusion-controlled limit. Europhys Lett, 1993, 23: 667–672

    Article  CAS  Google Scholar 

  9. Friedman B, O’Shaughnessy B. Theory of intramolecular reactions in polymeric liquids. Macromolecules, 1993, 26: 4888–4898

    Article  CAS  Google Scholar 

  10. Friedman B, O’Shaughnessy B. Kinetics of intermolecular reactions in dilute polymer solutions and unentangled melts. Macromolecules, 1993, 26: 5726–5739

    Article  CAS  Google Scholar 

  11. Stampe J, Sokolov IM. Cyclization of a polymer with charged reactive end groups. J Chem Phys, 2001, 114: 5043–5048

    Article  CAS  Google Scholar 

  12. Jun S, Bechhoefer J, Ha B. Diffusion-limited loop formation of semiflexible polymers: Kramers theory and the intertwined time scales of chain relaxation and closing. Europhys Lett, 2003, 64: 420–426

    Article  CAS  Google Scholar 

  13. Dua A, Cherayil BJ. The dynamics of chain closure in semiflexible polymers. J Chem Phys, 2002, 116: 399–409

    Article  CAS  Google Scholar 

  14. Afra R, Todd BA. Kinetics of loop formation in worm-like chain polymers. J Chem Phys, 2013, 138: 174908

    Article  Google Scholar 

  15. Toan NM, Marenduzzo D, Cook PR, Micheletti C. Depletion effects and loop formation in self-avoiding polymers. Phys Rev Lett, 2006, 97: 178302

    Article  CAS  Google Scholar 

  16. Bhattacharyya P, Sharma R, Cherayil BJ. Confinement and viscoelastic effects on chain closure dynamics. J Chem Phys, 2012, 136: 234903

    Article  Google Scholar 

  17. Chan SH, Dill KA. Intrachain loops in polymers: effects of excluded volume. J Chem Phys, 1989, 90: 492–509

    Article  CAS  Google Scholar 

  18. Podtelezhnikov A, Vologodskii A. Simulations of polymer cyclization by Brownian dynamics. Macromolecules, 1997, 30: 6668–6673

    Article  CAS  Google Scholar 

  19. Ortiz-Repiso M, Freire JJ, Rey A. Intramolecular reaction rates of flexible polymers. 1. Simulation results and the classical theory. Macromolecules, 1998, 31: 8356–8262

    Article  CAS  Google Scholar 

  20. Kim J, Lee S. The optimized Rouse-Zimm theory of excluded volume effects on chain dynamics. J Chem Phys, 2004, 121: 12640

    Article  CAS  Google Scholar 

  21. Kim J, Lee W, Sung J, Lee S. Excluded volume effects on intrachain reaction kinetics. J Phys Chem B, 2008, 112: 6250–6258

    Article  CAS  Google Scholar 

  22. Debnath P, Cherayil BJ. Dynamics of chain closure: approximate treatment of nonlocal interactions. J Chem Phys, 2004, 120: 2482–2489

    Article  CAS  Google Scholar 

  23. Toan NM, Morrison G, Hyeon C, Thirumalai D. Kinetics of loop formation in polymer chains. J Phys Chem B, 2008, 112: 6094–6106

    Article  CAS  Google Scholar 

  24. Chen JZY, Tsao H, Sheng Y. Diffusion-controlled first contact of the ends of a polymer: crossover between two sacling regimes. Phys Rev E, 2005, 72: 031804

    Article  Google Scholar 

  25. Sokolov IM. Cyclization of a polymer: first-passage problem for a non-Markovian process. Phys Rev Lett, 2003, 90: 080601

    Article  CAS  Google Scholar 

  26. Guérin T, Bénichou O, Voituriez R. Non-Markovian polymer reaction kinetics. Nature Chem, 2012, 4: 568–573

    Article  Google Scholar 

  27. Doucet D, Roitberg A, Hagen SJ. Kinetics of interal-loop formation in polymer chains: a simulation study. Biophys J, 2007, 92: 2281–2121

    Article  CAS  Google Scholar 

  28. Yeh I, Hummer G. Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent. J Am Chem Soc, 2002, 124: 6563–6568

    Article  CAS  Google Scholar 

  29. Uzawa T, Isoshima T, Ito Y, Ishimori K, Makarov, DE, Plaxco KW. Sequence and temperature dependence of the end-to-end collision dynamics of single-stranded DNA. Biophys J, 2013, 104: 2485–2492

    Article  CAS  Google Scholar 

  30. Everaers R, Rosa A. Multi-scale modeling of diffusion-controlled reactions in polymers: renormalisation of reactivity parameters. J Chem Phys, 2012, 136: 014902

    Article  Google Scholar 

  31. Amitai A, Kupka I, Holcman D. Computation of the mean first-encounter time between the ends of a polymer chain. Phys Rev Lett, 2012, 109: 108302

    Article  CAS  Google Scholar 

  32. Amitai A, Holcman D. Diffusing polymers in confined microdomains and estimation of chromosomal territory sizes from chromosome capture data. Phys Rev Lett, 2013, 110: 248105

    Article  CAS  Google Scholar 

  33. Lapidus LJ, Eaton WA, Hofrichter J. Measuring the rate of intramolecular contact formation in polypeptides. Proc Natl Acad Sci USA, 2000, 97: 7220–7225

    Article  CAS  Google Scholar 

  34. Lapidus LJ, Steinbach PJ, Eaton WA, Szabo A, Hofrichter J. Effects of chain stiffness on the dynamics of loop formation in polypeptides. Appendix: testing a 1-dimensional diffusion model for peptide dynamics. J Phys Chem B, 2002, 106: 11628–11640

    Article  CAS  Google Scholar 

  35. Buscaglia M, Lapidus LJ, Eaton WA, Hofrichter J. Effects of denaturants on the dynamics of loop formation in polypeptides. Biophys J, 2006, 91: 276–288

    Article  CAS  Google Scholar 

  36. Neuweiler H, Schulz A, Böhmer M, Enderlein J, Sauer M. Measurement of submicrosecond intramolecular contact formation in peptides at the single-molecule level. J Am Chem Soc, 2003, 125: 5324–5330

    Article  CAS  Google Scholar 

  37. Neuweiler H, Löllmann M, Doose S, Sauer M. Dynamics of unfolded polypeptide chains in crowded environment studied by fluorescence correlation spectroscopy. J Mol Biol, 2007, 365: 856–869

    Article  CAS  Google Scholar 

  38. Allemand J, Cocco S, Douarche N, Lia G. Loops in DNA: an overview of experimental and theoretical approaches. Eur Phys J E Soft Matter, 2006, 19: 293–302

    Article  CAS  Google Scholar 

  39. Chandler D. Introduction to Modern Statistical Mechanism. Oxford: Oxford University Press, 1987

    Google Scholar 

  40. Ermak DL, Buckholz H. Numerical integration of the Langevin equation: Monte Carlo simulation. J Comput Phys, 1980, 35: 169–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifu Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Luo, K. Loop formation and stability of self-avoiding polymer chains. Sci. China Chem. 58, 689–693 (2015). https://doi.org/10.1007/s11426-014-5203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5203-y

Keyowrds

Navigation