Skip to main content
Log in

Redox potentials of trifluoromethyl-containing compounds

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Trifluoromethylation reactions are important transformations in the research and development of drugs, agrochemicals and functional materials. An oxidation/reduction process of trifluoromethyl-containing compounds is thought to be involved in many recently tested catalytic trifluoromethylation reactions. To provide helpful physical chemical data for mechanistic studies on trifluoromethylation reactions, the redox potentials of a variety of trifluoromethyl-containing compounds and trifluoromethylated radicals were studied by quantum-chemical methods. First, wB97X-D was found to be a reliable method in predicting the ionization potentials, electron affinities, bond dissociation enthalpies and redox potentials of trifluoromethyl-containing compounds. One-electron absolute redox potentials of 79 trifluoromethyl substrates and 107 trifluoromethylated radicals in acetonitrile were then calculated with this method. The theoretical results were found to be helpful for interpreting experimental observations such as the relative reaction efficiency of different trifluoromethylation reagents. Finally, the bond dissociation free energies (BDFE) of various compounds were found to have a good linear relationship with the related bond dissociation enthalpies (BDE). Based on this observation, a convenient method was proposed to predict one-electron redox potentials of neutral molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlosser M. CF3-bearing aromatic and heterocyclic building blocks. Angew Chem Int Ed, 2006, 45: 5432–5446

    Article  CAS  Google Scholar 

  2. Müller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science, 2007, 317: 1881–1886

    Article  Google Scholar 

  3. Bartholow M. Top 200 drugs of 2012. Pharmacy Times, 2013: 78

    Google Scholar 

  4. Bartholow M. Top 200 drugs of 2011. Pharmacy Times, 2012: 77

    Google Scholar 

  5. Jeschke P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manage Sci, 2010, 66: 10–27

    Article  CAS  Google Scholar 

  6. Kirsch P. Modern Fluoroorganic Chemistry. Weinheim: Wiley-VCH, 2004

    Book  Google Scholar 

  7. Tomashenko OA, Grushin VV. Aromatic trifluoromethylation with metal complexes. Chem Rev, 2011, 111: 4475–4521

    Article  CAS  Google Scholar 

  8. Furuya T, Kamlet AS, Ritter T. Catalysis for fluorination and trifluoromethylation. Nature, 2011, 473: 470–477

    Article  CAS  Google Scholar 

  9. Luo C, Tang K, Li Y, Yin DL, Chen XG, Huang HH. Design, synthesis and in vitro antitumor evaluation of novel diaryl urea derivatives bearing sulfonamide moiety. Sci China Chem, 2013, 56: 1564–1572

    Article  CAS  Google Scholar 

  10. He M, Pan ZX, Bai S, Li P, Zhang YP, Li H, Hu DY, Yang S, Song BA, Luo C, Tang K, Li Y, Yin DL, Chen XG, Huang HH. Enantioselective synthesis of β-amino esters bearing a quinazoline moiety via a Mannich-type reaction catalyzed by a cinchona alkaloid derivative. Sci China Chem, 2013, 56: 321–328

    Article  CAS  Google Scholar 

  11. Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science, 2010, 328: 1679–1681

    Article  CAS  Google Scholar 

  12. Dai JJ, Fang C, Xiao B, Yi J, Xu J, Liu ZJ, Lu X, Liu L, Fu Y. Copper-promoted sandmeyer trifluoromethylation reaction. J Am Chem Soc, 2013, 135: 8436–8439

    Article  CAS  Google Scholar 

  13. Zeng Y, Zhang L, Zhao Y, Ni C, Zhao J, Hu J. Silver-mediated trifluoromethylation-iodination of arynes. J Am Chem Soc, 2013, 135: 2955–2958

    Article  CAS  Google Scholar 

  14. Wu X, Chu L, Qing FL. Silver-catalyzed hydrotrifluoromethylation of unactivated alkenes with CF3SiMe3. Angew Chem Int Ed, 2013, 52: 2198–2202

    Article  CAS  Google Scholar 

  15. Xu J, Xiao B, Xie CQ, Luo DF, Liu L, Fu Y. Copper-promoted trifluoromethylation of primary and secondary alkylboronic acids. Angew Chem Int Ed, 2012, 51: 12551–12554

    Article  CAS  Google Scholar 

  16. Nagib DA, MacMillan DWC. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature, 2011, 480: 224–228

    Article  CAS  Google Scholar 

  17. Yasu Y, Koike T, Akita M. Three-component oxytrifluoromethylation of alkenes: highly efficient and regioselective difunctionalization of C=C bonds mediated by photoredox catalysts. Angew Chem Int Ed, 2012, 51: 9567–9571

    Article  CAS  Google Scholar 

  18. Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herlé B, Sach N, Collins MR, Ishihara Y, Baran PS. Practical and innate carbon-hydrogen functionalization of heterocycles. Nature, 2012, 492: 95–99

    Article  CAS  Google Scholar 

  19. Ji Y, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. Innate C-H trifluoromethylation of heterocycles. Proc Natl Acad Sci USA, 2011, 108: 14411–14415

    Article  CAS  Google Scholar 

  20. Andrieux CP, Gélis L, Medebielle M, Pinson J, Savéant JM. Outer-sphere dissociative electron transfer to organic molecules: a source of radicals or carbanions? Direct and indirect electrochemistry of perfluoroalkyl bromides and iodides. J Am Chem Soc, 1990, 112: 3509–3520

    Article  CAS  Google Scholar 

  21. Pud AA, Shapoval GS, Kukhar VP, Mikulina OE, Gervits LL. Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochemica Acta, 1995, 40: 1157–1164

    Article  CAS  Google Scholar 

  22. Lee YO, Pradhan T, No K, Kim JS. N,N-dimethylaniline and 1-(trifluoromethyl)benzene-functionalized tetrakis(ethynyl)pyrenes: synthesis, photophysical, electrochemical and computational studies. Tetrahedron, 2012, 68: 1704–1711

    Article  CAS  Google Scholar 

  23. Fu Y, Liu L, Yu HZ, Wang YM, Guo QX. Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J Am Chem Soc, 2005, 127: 7227–7234

    Article  CAS  Google Scholar 

  24. Bachrach SM. Computational Organic Chemistry. John Wiley & Sons Inc., 2007

    Book  Google Scholar 

  25. Becke AD. Densityfunctional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG. Development of the Colic-Salvetti correlation-energy formulainto a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  27. Yanai T, Tew DP, Handy NC. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett, 2004, 393: 51–57

    Article  CAS  Google Scholar 

  28. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc, 2008, 120: 215–241

    Article  CAS  Google Scholar 

  29. Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys, 2008, 10: 6615–6620

    Article  CAS  Google Scholar 

  30. Tao J, Perdew JP. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Chem Phys Lett, 2003, 91: 146401

    Google Scholar 

  31. Adamo C, Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys, 1998, 108: 664–675

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01. Wallingford CT: Gaussian Inc., 2010

    Google Scholar 

  33. Wang C, Guo QX. Theoretical study on formation of thioesters via O-to-S acyl transfer. Sci China Chem, 2012, 55: 2075–2080

    Article  CAS  Google Scholar 

  34. Feng L, Bai FQ, Wu Y, Zhang HX. Does the molecular structure of CaH2 affect the dihydrogen bonding in CaH2⋯HY (Y = CH3, C2H3, C2H, CN, and NC) complexes? A quantum chemistry study using MP2 and B3LYP methods. Sci China Chem, 2012, 55: 262–269

    Article  CAS  Google Scholar 

  35. Hou SL, Li XY, Xu JX. Theoretical studies on selectivities in the Staudinger reaction of vicinal diimines and ketenes. Sci China Chem, 2013, 56: 370–379

    Article  CAS  Google Scholar 

  36. Dolbier WR Jr. Structure, reactivity, and chemistry of fluoroalkyl radicals. Chem Rev, 1996, 96: 1557–1584

    Article  CAS  Google Scholar 

  37. Pearson RG. Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem, 1989, 54: 1423–1430

    Article  CAS  Google Scholar 

  38. Luo YR. In: Comprehensive Handbook of Chemical Bond Energies. Boca Raton, FL: CRC Press, 2007

    Book  Google Scholar 

  39. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B, 2009, 113: 6378–6396

    Article  CAS  Google Scholar 

  40. Hollwarth A, Bohme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al Bi and f-type polarization functions for Zn, Cd, Hg. Chem Phys Lett, 1993, 208: 237–240

    Article  Google Scholar 

  41. Trasatti S. The absolute electrode potential: an explanatory note. Pure Appl Chem, 1986, 58: 955–966

    CAS  Google Scholar 

  42. We noted that the mixture solvent of dichloromethane and water was used in Baran’s experiments, thus the E ox-radical in the two solvents were also calculated (Table 6). The results shown that CF3SO2 owns the lowest E ox-radical in the dichloromethane and water. Interestingly, The E ox-radical of CF3SO2 is quite close to that of Togni reagent in more polar solvent H2O. This understandable that the calculated oxidization of CF3SO2 is a charge-neutralization process whereas that of Togni reagent is a charge-separation process. The former is suppressed but the later is promoted in polar solvent as the results shown. And the real E ox-radical of these reagents may lies between the values in DCM and H2O.

  43. Połczyński P, Jurczakowski R, Grochala W. Stabilization and strong oxidizing properties of Ag(II)in a fluorine-free solvent. Chem Commun, 2013, 49: 7480–7482

    Article  Google Scholar 

  44. Mu X, Chen S, Zhen X, Liu G. Palladium-catalyzed oxidative trifluoromethylation of indoles at room temperature. Chem Eur J, 2011, 17: 6039–6042

    Article  CAS  Google Scholar 

  45. Seo S, Taylor JB, Greaney MF. Silver-catalysed trifluoromethylation of arenes at roomtemperature. Chem Commun, 2013, 49: 6385–6387

    Article  CAS  Google Scholar 

  46. Bergès J, de Oliveira P, Fourré I, Houée-Levin C. The one-electron reduction potential of methionine-containing peptides depends on the sequence. J Phys Chem B, 2012, 116: 9352–9362

    Article  Google Scholar 

  47. Holland JP, Green JC, Dilworth JR. Probing the mechanism of hypoxia selectivity of copper bis(thiosemicarbazonato) complexes: DFT calculation of redox potentials and absolute acidities in solution. Dalton Trans, 2006: 783–794

    Google Scholar 

  48. Boeré RT, Bolli C, Finze M, Himmelspach A, Knapp C, Roemmele TL. Quantum-chemical and electrochemical investigation of the electrochemical windows of halogenated carborate anions. Chem Eur J, 2013, 19: 1784–1795

    Article  Google Scholar 

  49. Mbomekallé I, López X, Poblet JM, Sécheresse F, Keita B, Nadjo L. Influence of the heteroatom size on the redox potentials of selected polyoxoanions. Inorg Chem, 2010, 49: 7001–7006

    Article  Google Scholar 

  50. Zhu XQ, Wang CH, Liang H. Scales of oxidation potentials, pK a, and BDE of various hydroquinones and catechols in DMSO. J Org Chem, 2010, 75: 7240–7257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Fu or Lei Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Yu, H., Fu, Y. et al. Redox potentials of trifluoromethyl-containing compounds. Sci. China Chem. 58, 673–683 (2015). https://doi.org/10.1007/s11426-014-5178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5178-8

Keywords

Navigation