Skip to main content
Log in

Enantioselective synthesis of β-amino esters bearing a quinazoline moiety via a Mannich-type reaction catalyzed by a cinchona alkaloid derivative

  • Articles
  • Special Topic The Frontiers of Chemical Biology and Synthesis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The cinchona alkaloids catalyzed the direct asymmetric Mannich reactions of 1, 3-dicarbonyl compounds with acyl imines to produce novel β-amino ester derivatives containing a quinazoline moiety. The adducts were isolated with high enantiomeric excess (up to 99%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis FA, Szewczyk JM. Synthesis and applications of nonracemic β-amino aldehydes to the asymmetric synthesis of piperdines: (+)-dihydropinidine. Tetrahedron Lett, 1998, 39(33): 5951–5954

    Article  CAS  Google Scholar 

  2. Seebach D, Kimmerlin T, Sebesta R, Campo MA, Beck AK. How we drifted into peptide chemistry and where we have arrived at. Tetrahedron, 2004, 60: 7455–7506

    Article  CAS  Google Scholar 

  3. Shih C, Gossett LS, Gruber JM, Grossman CS, Andis SL, Schultz RM, Worzalla JF, Corbett TH, Metz JT. Synthesis and biological evaluation of novel cryptophycin analogs with modification in the beta-alanine region. Bioorg Med Chem Lett, 1999, 9(1): 69–74

    Article  CAS  Google Scholar 

  4. Juaristi EED. Enantioselective Synthesis of β-Amino Acids. New York: Wiley-VCH, 1997

    Google Scholar 

  5. Mock WH, Chen H. Principles of hydroxamate inhibition of metalloproteases: Carboxypeptidase A. Biochemistry, 2000, 39(45): 13945–13952

    Article  CAS  Google Scholar 

  6. Callahan JF, Huffman WF, Moore ML. Newlander KA. HIV protease inhibitors. US Patent, 5438118, 1995-08-01

  7. Peukert S, Sun Y, Zhang R, Hurley B, Sabio M, Shen X, Gray C, Dzink-Fox J, Tao J, Cebula R, Wattanasin S. Design and structure-activity relationships of potent and selective inhibitors of undecaprenyl pyrophosphate synthase (UPPS): Tetramic, tetronic acids and dihydropyridin-2-ones. Bioorg Med Chem Lett, 2008, 18(6): 1840–1844

    Article  CAS  Google Scholar 

  8. Carter PH, Cavallaro CL, Lucca GVD. Piperazinyl derivatives as modulators of chemokine receptor activity. US Patent, 20070179148, 2007-08-02

  9. Crawford TD, Rawson DJ, Thorpe AJ. β-Amino acids derivatives. International application. WO2006120544, 2006-11-16

  10. Tang W, Zhang X. Highly efficient synthesis of chiral beta-amino acid derivatives via asymmetric hydrogenation. Org Lett, 2002, 4(23): 4159–4161

    Article  CAS  Google Scholar 

  11. Ma JA. Recent developments in the catalytic asymmetric synthesis of α- and β-amino acids. Angew Chem Int Ed, 2003, 42(36): 4290–4299

    Article  CAS  Google Scholar 

  12. Sibi MP, Prabagaran N, Ghorpade SG, Jasperse CP. Enantioselective synthesis of α, β-disubstituted-β-amino acids. J Am Chem Soc, 2003, 125(39): 11796–11797

    Article  CAS  Google Scholar 

  13. Edmonds MK, Graichen FH, Gardiner MJ, Abell AD. Enantioselective synthesis of alpha-fluorinated beta2-amino acids. Org Lett, 2008, 10(5): 885–887

    Article  CAS  Google Scholar 

  14. Agami C, Cheramy S, Dechoux L, Melaimi M. Enantioselective synthesis of α, b-substituted β-amino acids. Tetrahedron, 2001, 57(1): 195–200

    Article  CAS  Google Scholar 

  15. Vesely J, Rios R, Ibrahem I, Córdova A. Highly enantioselective organocatalytic addition of unmodified aldehydes to N-Boc protected imines: One-pot asymmetric synthesis of β-amino acids. Tetrahedron Lett, 2007, 48: 421–425

    Article  CAS  Google Scholar 

  16. Liu TY, Long J, Li BJ, Jiang L, Li R, Wu Y, Ding LS, Chen YC. Enantioselective construction of quaternary carbon centre catalysed by bifunctional organocatalyst. Org Biomol Chem, 2006, 4(11): 2097–2099

    Article  CAS  Google Scholar 

  17. Liu TY, Li R, Chai Q, Long J, Li BJ, Wu Y, Ding LS, Chen YC. Enantioselective Michael addition of α-substituted cyanoacetates to vinyl ketones catalyzed by bifunctional organocatalysts. Chem Eur J, 2007, 13(1): 319–327

    Article  CAS  Google Scholar 

  18. Periasamy M, Suresh S, Ganesan SS. Addition of titanium ester enolates to aldimines containing a chiral α-methylbenzylamine moiety: Synthesis of chiral syn-β-amino esters. Tetrahedron: Asymmetr, 2006, 17(9): 1323–1331

    Article  CAS  Google Scholar 

  19. Dziedzic P, Córdova A. Acyclic β-amino acid catalyzed asymmetric anti-selective Mannich-type reactions. Tetrahedron: Asymmetr, 2007, 18(9): 1033–1037

    Article  CAS  Google Scholar 

  20. Kim SG, Park TH. An efficient synthesis of (+)-epi-cytoxazone via asymmetric organocatalysis. Tetrahedron: Asymmetr, 2008, 19(13): 1626–1629

    Article  CAS  Google Scholar 

  21. Zhang ZW, Lu G, Chen MM, Lin N, Li YB, Hayashi T, Chan ASC. Organocatalytic asymmetric Mannich-type reaction of N-sulfonylimines with isocyanoacetate leading to optically active 2-imidazoline-4-carboxylates. Tetrahedron: Asymmetr, 2010, 21(13): 1715–1721

    Article  CAS  Google Scholar 

  22. Jia YM, Mao ZF, Wang R. Asymmetric triple cascade organocatalytic reaction in water: construction of polyfunctional cyclohexene building blocks having multiple stereocenters. Tetrahedron: Asymmetr, 2011, 22(23): 2018–2023

    Article  CAS  Google Scholar 

  23. Ting A, Schaus SE. Organocatalytic asymmetric Mannich reactions: New methodology, catalyst design, and synthetic applications. Eur J Org Chem, 2007(35): 5797–5815

  24. Alcaide B, Almendros P. Organocatalytic reactions with acetaldehyde. Angew Chem Int Ed, 2008, 47(25): 4632–4634

    Article  CAS  Google Scholar 

  25. Verkade JMM, van Hemert LJC, Quaedflieg PJLM, Rutjes FPJT. Organocatalysed asymmetric Mannich reactions. Chem Soc Rev, 2008, 37: 29–41

    Article  CAS  Google Scholar 

  26. Wenzel AG, Jacobsen EN. Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: Enantioselective synthesis of β-aryl-β-amino acids. J Am Chem Soc, 2002, 124(44): 12964–12965

    Article  CAS  Google Scholar 

  27. Josephsohn NS, Snapper ML, Hoveyda AH. Ag-Catalyzed asymmetric Mannich reactions of enol ethers with aryl, alkyl, alkenyl and alkynyl imines. J Am Chem Soc, 2004, 126(12): 3734–3735

    Article  CAS  Google Scholar 

  28. Lou S, Taoka BM, Jing A, Schaus SE. Asymmetric mannich reactions of beta-keto esters with acyl imines catalyzed by cinchona alkaloids. J Am Chem Soc, 2005, 127(32): 11256–11257

    Article  CAS  Google Scholar 

  29. Cutting GA, Stainforth NE, John MP, Kociok-Köhn G, Willis MC. Direct catalytic enantioselective Mannich reactions: Synthesis of protected anti-α, β-diamino acids. J Am Chem Soc, 2007, 129(35): 10632–10633

    Article  CAS  Google Scholar 

  30. Zhang HL, Mitsumori S, Utsumi N, Imai M, Garcia-Delgado N, Mifsud M, Albertshofer K, Cheong PH Y, Houk KN, Tanaka F, Barbas CFIII. Catalysis of 3-pyrrolidinecarboxylic acid and related pyrrolidine derivatives in enantioselective anti-Mannich-type reactions: Importance of the 3-acid group on pyrrolidine for stereocontrol. J Am Chem Soc, 2008, 130(3): 875–886

    Article  CAS  Google Scholar 

  31. Kim DY, Kang YK. Organocatalytic highly enantio- and diastereoselective Mannich reaction of -ketoesters with N-Boc-aldimines. J Org Chem, 2009, 74(15): 5734–5737

    Article  Google Scholar 

  32. Zhang H, Syed S, arbas CFIII. Highly enantio- and diastereoselective Mannich reactions of glycine schiff bases with in situ generated N-Boc-imines catalyzed by a cinchona alkaloid thiourea. Org Lett, 2010, 12(4): 708–711

    Article  CAS  Google Scholar 

  33. Selected examples of metal-catalyzed Mannich-type reactions, see: (a) Cutting GA, Stainforth NE, John MP, Kociok-Kohn G, Willis MC. Direct catalytic enantioselective Mannich reactions: Synthesis of protected anti-α, β-diamino acids. J Am Chem Soc, 2007, 129(35): 10632–10633

    Article  CAS  Google Scholar 

  34. Morimoto H, Lu G, Aoyama N, Matsunaga S, Shibasaki M. Lanthanum aryloxide/pybox-catalyzed direct asymmetric Mannich-type reactions using a trichloromethyl ketone as a propionate equivalent donor. J Am Chem Soc, 2007, 129(31): 9588–9589

    Article  CAS  Google Scholar 

  35. Trost BM, Jaratjaroonphong J, Reutrakul V. A direct catalytic asymmetric Mannich-type reaction via a dinuclear zinc catalyst: Synthesis of either anti- or syn-α-hydroxy-β-amino ketones. J Am Chem Soc, 2006, 128(9): 2778–2779

    Article  CAS  Google Scholar 

  36. Harada S, Handa S, Matsunaga S, Shibasaki M. Direct catalytic asymmetric Mannich-type reaction of N-(2-hydroxyacetyl)pyrrole promoted by an In(O-iPr)3/linked-BINOL complex: Use of an N-acylpyrrole as an ester equivalent donor. Angew Chem Int Ed, 2005, 44(28): 4365–4368

    Article  CAS  Google Scholar 

  37. Okada A, Shibuguchi T, Ohshima T, Masu H, Yamaguchi K, Shibasaki M. Enantio- and diastereoselective catalytic Mannich-type reaction of a glycine Schiff base using a chiral two-center phase-transfer catalyst. Angew Chem Int Ed, 2005, 44(29): 4564–4567

    Article  CAS  Google Scholar 

  38. For selected examples of direct organocatalytic Mannich-type reactions, see: (f) Yang JW, Chandler C, Stadler M, Kampen D, List B. Proline-catalysed Mannich reactions of acetaldehyde. Nature, 2008, 452(7186): 453–455

    Article  CAS  Google Scholar 

  39. Zhang H, Mitsumori S, Utsumi N, Imai M, Garcia-Delgado N, Mifsud M, Albertshofer K, Cheong PHY, Houk KN, Tanaka F, Barbas CFIII. Catalysis of 3-pyrrolidinecarboxylic acid and related pyrrolidine derivatives in enantioselective anti-Mannich-type reactions: Importance of the 3-acid group on pyrrolidine for stereocontrol. J Am Chem Soc, 2008, 130(3): 875–886

    Article  CAS  Google Scholar 

  40. Vesely J, Rios R, Ibrahem I, Córdova A. Highly enantioselective organocatalytic addition of unmodified aldehydes to N-Boc protected imines: One-pot asymmetric synthesis of β-amino acids. Tetrahedron Lett, 2007, 48: 421–425

    Article  CAS  Google Scholar 

  41. Hashimoto T, Maruoka K. Design of axially chiral dicarboxylic acid for asymmetric Mannich reaction of arylaldehyde N-Boc imines and diazo compounds. J Am Chem Soc, 2007, 129(33): 10054–10055

    Article  CAS  Google Scholar 

  42. Kano T, Yamaguchi Y, Tokuda O, Maruoka K. anti-Selective direct asymmetric Mannich reactions catalyzed by axially chiral amino sulfonamide as an organocatalyst. J Am Chem Soc, 2005, 127(47): 16408–16409

    Article  CAS  Google Scholar 

  43. Enders D, Grondal C, Vrettou M, Raabe G. Asymmetric synthesis of selectively protected amino sugars and derivatives by a direct organocatalytic Mannich reaction. Angew Chem Int Ed, 2005, 44(26): 4079–4083

    Article  CAS  Google Scholar 

  44. Connon SJ. The design of novel, synthetically useful (thio) urea-based organo-catalysts. Synlett, 2009, (3): 354–376

    Google Scholar 

  45. Yu XH, Wang W. Hydrogen-bond-mediated asymmetric catalysis. Chem Asian J, 2008, 3(3): 516–532

    Article  Google Scholar 

  46. Tylor MS, Jacobson EN. Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem Int Ed, 2006, 45: 1520–1543

    Article  Google Scholar 

  47. Connon SJ. Chiral phosphoric acids: Powerful organocatalysts for asymmetric addition reactions to imines. Angew Chem Int Ed, 2006, 45: 3909–3912

    Article  CAS  Google Scholar 

  48. Takemoto Y. Recognition and activation by ureas and thioureas: Stereoselective reactions using ureas and thioureas as hydrogen-bonding donors. Org Biomol Chem, 2005, 3: 4299–4306

    Article  CAS  Google Scholar 

  49. Connon SJ. Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chem Commun, 2008: 2499–2510

  50. Doyle AG, Jacobsen EN. Small-molecule H-bond donors in asymmetric catalysis. Chem Rev, 2007, 107(12): 5713–5743

    Article  CAS  Google Scholar 

  51. Huang HB, Jacobsen EN. Highly enantioselective direct conjugate addition of ketones to nitroalkenes promoted by a chiral primary amine-thiourea catalyst. J Am Chem Soc, 2006, 128(22): 7170–7171

    Article  CAS  Google Scholar 

  52. Lalonde MP, Chen YG, Jacobsen EN. A chiral primary amine thiourea catalyst for the highly enantioselective direct conjugate addition of α,α-disubstituted aldehydes to nitroalkenes. Angew Chem Int Ed, 2006, 45(38): 6366–6370

    Article  CAS  Google Scholar 

  53. Akiyama T, Itoh J, Fuchibe K. Recent progress in chiral brønsted acid catalysis. Adv Synth Catal, 2006, 348: 999–1010

    Article  CAS  Google Scholar 

  54. Wang J, Li H, Yu XH, Zu LS, Wang W. Chiral binaphthyl-derived amine-thiourea organocatalyst-promoted asymmetric Morita-Baylis-Hillman reaction. Org Lett, 2005, 7(19): 4293–4296

    Article  CAS  Google Scholar 

  55. Li BJ, Jiang L, Liu M, Chen YC, Ding LS, Wu Y. Asymmetric Michael addition of arylthiols to α, β-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts. Synlett, 2005: 603–606

  56. Vakulya B, Varga S, Csámpai A, Soos T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org Lett, 2005, 7(10): 1967–1969

    Article  CAS  Google Scholar 

  57. McCooey SH, Connon SJ. Urea- and thiourea-substituted cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the aysmmetric addition of malonate to nitroalkenes: Inversion of configuration at C9 dramatically improves catalyst performance. Angew Chem Int Ed, 2005, 44(39): 6367–6370

    Article  CAS  Google Scholar 

  58. Ye J, Dixon DJ, Hynes PS. Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chem Commun, 2005: 4481–4483

  59. Dalko PI, Moisan L. In the golden age of organocatalysis. Angew Chem Int Ed, 2004, 43: 5138–5175

    Article  CAS  Google Scholar 

  60. Okino T, Hoashi Y, Takemoto Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J Am Chem Soc, 2003, 125(42): 12672–12673

    Article  CAS  Google Scholar 

  61. Chen Y, McDaid P, Deng L. Asymmetric alcoholysis of cyclic anhydrides. Chem Rev, 2003, 103: 2965–2983

    Article  CAS  Google Scholar 

  62. France S, Guerin DJ, Miller SJ, Lectka T. Nucleophilic chiral amines as catalysts in asymmetric synthesis. Chem Rev, 2003, 103: 2985–3012

    Article  CAS  Google Scholar 

  63. Tian SK, Chen YG, Hang JF, Tang L, McDaid P, Deng L. Asymmetric organic catalysis with modified cinchona alkaloids. Acc Chem Res, 2004, 37: 621–631

    Article  CAS  Google Scholar 

  64. Hang J, Tian SK, Tang L, Deng L. Asymmetric synthesis of α-amino acids via cinchona alkaloid-catalyzed kinetic resolution of urethane-protected α-amino acid N-carboxyanhydrides. J Am Chem Soc, 2001, 123: 12696–12697

    Article  CAS  Google Scholar 

  65. Hang J, Li H, Deng L. Development of a rapid, room-temperature dynamic kinetic resolution for efficient asymmetric synthesis of α-aryl amino acids. Org Lett, 2002, 4(19): 3321–3324

    Article  CAS  Google Scholar 

  66. Tang L, Deng L. Dynamic kinetic resolution via dual-function catalysis of modified cinchona alkaloids: Asymmetric synthsis of α-hydroxy carboxylic acids. J Am Chem Soc, 2002, 124: 2870–2871

    Article  CAS  Google Scholar 

  67. Tian SK, Hong R, Deng L. Catalytic asymmetric cyanosilylation of ketones with chiral Lewis base. J Am Chem Soc, 2003, 125(33): 9900–9901

    Article  CAS  Google Scholar 

  68. Tian SK, Deng L. A highly enantioselective chiral Lewis base-catalyzed asymmetric cyanation of ketones. J Am Chem Soc, 2001, 123(25): 6195–6196

    Article  CAS  Google Scholar 

  69. Knudsen KR, Jørgensen KA. A chiral molecular recognition approach to the formation of optically active quaternary centres in aza-Henry reactions. Org Biomol Chem, 2005, 3: 1362–1364

    Article  CAS  Google Scholar 

  70. Bella M, Jørgensen KA. Organocatalytic enantioselective conjugate addition to alkynones. J Am Chem Soc, 2004, 126(18): 5672–5673

    Article  CAS  Google Scholar 

  71. Vakulya B, Varga S, Csa’mpai A, Soo’s T. Highly enantioselective conjugate sddition of nitromethane to chalcones using bifunctional cinchona organo-catalysts. Org Lett, 2005, 7(10): 1967–1969

    Article  CAS  Google Scholar 

  72. Li HM, Wang Y, Tang L, Deng L. Highly enantioselective conjugate addition of malonate and β-ketoester to nitroalkenes: Asymmetric C-C bond formation with new bifunctional organic catalysts based on cinchona alkaloids. J Am Chem Soc, 2004, 126(32): 9906–9907

    Article  CAS  Google Scholar 

  73. Li HM, Song J, Liu XF, Deng L. Catalytic enantioselective C-C bond forming conjugate additions with vinyl sulfones. J Am Chem Soc, 2005, 127(25): 8948–8949

    Article  CAS  Google Scholar 

  74. Lou S, Taoka BM, Ting A, Schaus SE. Asymmetric Mannich reactions of β-keto esters with acylimines catalyzed by cinchona alkaloids. J Am Chem Soc, 2005, 127(32): 11256–11257

    Article  CAS  Google Scholar 

  75. Bai S, Liang XP, Song BA, Song BA, Bhadury PS, Hu DY, Yang S. Asymmetric Mannich reactions catalyzed by cinchona alkaloid thiourea enantioselective one-pot synthesis of novel β-amino ester derivatives. Tetrahedron: Asymmetr, 2011, 22(5): 518–523

    Article  CAS  Google Scholar 

  76. Li L, Song BA, Bhadury PS, Zhang YP, Hu DY, Yang S. Enantioselective synthesis of β-amino esters bearing a benzothiazole moiety via a Mannich-type reaction catalyzed by a cinchona alkaloid derivative. Eur J Org Chem, 2011, (25): 4743–4746

  77. Lin P, Song BA, Bhadury PS, Hu DY, Zhang YP, Jin LH, Yang S. Chiral cinchona alkaloid-thiourea catalyzed mannich reaction for enantioselective synthesis of β-amino ketones bearing benzothiazol moiety. Chin J Chem, 2011, 29(11): 2433–2438

    Article  CAS  Google Scholar 

  78. Kubo K, Shimizu T, Ohyama SI, Murooka H, Iwai A, Nakamura K, Hasegawa K, Kobayashi Y, Takahashi N, Takahashi K, Kato S, Izawa T, Isoe T. Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: Synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N′-{4-(4-quinolyloxy) phenyl}ureas. J Med Chem, 2005, 48(5): 1359–1366

    Article  CAS  Google Scholar 

  79. Wissner A, Floyd MB, Johnson BD, Fraser H, Ingalls C, Nittoli T, Dushin RG, Discafani C, Nilakantan R, Marini J, Ravi M, Cheung KW, Tan XZ, Musto S, Annable T, Siegel MM, Loganzo F. 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2. J Med Chem, 2005, 48(24): 7560–7581

    Article  CAS  Google Scholar 

  80. Baba A, Kawamura N, Makino H, Ohta Y, Taketomi S, Sohda T. Studies on disease-modifying antirheumatic drugs: Synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory activity. J Med Chem, 1996, 39(26): 5176–5182

    Article  CAS  Google Scholar 

  81. Farhanullah RVJ, Tripathi BK, Srivastava AK. Synthesis and antihypergl-ycaemic activity of suitably functionalised-4(3H)-quinozolones. Bioorg Med Chem, 2003, 11(11): 2439–2444

    Article  Google Scholar 

  82. Pandeya SN, Sriram D, Nath G, Clercq ED. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin derivatives with 3-amino-2-methylmercapto quinazolin-4(3H)-one. Pharm Acta Helv, 1999, 74(1): 11–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoAn Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Pan, Z., Bai, S. et al. Enantioselective synthesis of β-amino esters bearing a quinazoline moiety via a Mannich-type reaction catalyzed by a cinchona alkaloid derivative. Sci. China Chem. 56, 321–328 (2013). https://doi.org/10.1007/s11426-012-4822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4822-4

Keywords

Navigation