Skip to main content
Log in

Carbon-free Cu2ZnSn(S,Se)4 film prepared via a non-hydrazine route

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) is an ideal candidate for light harvesting materials in earth-abundant low-cost thin-film solar cells (TFSC). Although the solution-based processing is a most promising approach to achieve low-cost solar cells with high power conversion efficiency, the issues of poor crystallinity and carbon residue in CZTSSe thin films are still challenging. Herein, a non-hydrazine solution-based method was reported to fabricate highly crystallized and carbon-free kesterite CZTSSe thin films. Interestingly, it was found that the synthetic atmosphere of metal organic precursors have a dramatic impact on the morphology and crystallinity of CZTSSe films. By optimizing the processing parameters, we were able to obtain a kesterite CZTSSe film composed of compact large crystal grains with trace carbon residues. Also, a viable reactive ion etching (RIE) processing with optimized etching conditions was then developed to successfully eliminate trace carbon residues on the surface of the CZTSSe film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H. Photovoltaic technology: the case for thin-film solar cells. Science, 1999, 285: 692–698

    Article  CAS  Google Scholar 

  2. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv Energy Mater, 2013, 3: 34–38

    Article  CAS  Google Scholar 

  3. Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov TK, Mitzi DB. Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency. Energy Environ Sci, 2012, 5: 7060–7065

    Article  CAS  Google Scholar 

  4. Cao AM, Hu JS, Wan LJ. Morphology control and shape evolution in 3d hierarchical superstructures. Sci China Chem, 2012, 55: 2249–2256

    Article  CAS  Google Scholar 

  5. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 42). Prog Photovolt: Res Appl, 2013, 21: 827–837

    Article  Google Scholar 

  6. Jackson P, Hariskos D, Wuerz R, Wischmann W, Powalla M. Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%. Phys Status Solidi RRL, 2014, 8: 219–222

    Article  CAS  Google Scholar 

  7. Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mat Sol C, 2011, 95: 1421–1436

    Article  CAS  Google Scholar 

  8. Katagiri H, Jimbo K, Maw WS, Oishi K, Yamazaki M, Araki H, Takeuchi A. Development of CZTS-based thin film solar cells. Thin Solid Films, 2009, 517: 2455–2460

    Article  CAS  Google Scholar 

  9. Ramasamy K, Malik MA, O’Brien P. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem Commun, 2012, 48: 5703–5714

    Article  CAS  Google Scholar 

  10. Todorov TK, Reuter KB, Mitzi DB. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater, 2010, 22: E156–E159

    Article  CAS  Google Scholar 

  11. Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc, 2010, 132: 17384–17386

    Article  CAS  Google Scholar 

  12. Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA. Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J Am Chem Soc, 2009, 131: 12554–12555

    Article  CAS  Google Scholar 

  13. Walsh A, Chen S, Wei SH, Gong XG. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater, 2012, 2: 400–409

    Article  CAS  Google Scholar 

  14. Woo K, Kim Y, Moon J. A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ Sci, 2012, 5: 5340–5345

    Article  CAS  Google Scholar 

  15. Shin B, Gunawan O, Zhu Y, Bojarczuk NA, Chey SJ, Guha S. Thin film solar cell with 8.4% power conversion efficiency using an earthabundant Cu2ZnSnS4 absorber. Prog Photovolt: Res Appl, 2013, 21: 72–76

    Article  CAS  Google Scholar 

  16. Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol Energy Mat Sol C, 1997, 49: 407–414

    Article  CAS  Google Scholar 

  17. Cho JW, Ismail A, Park SJ, Kim W, Yoon S, Min BK. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications. ACS Appl Mater Interf, 2013, 5: 4162–4165

    CAS  Google Scholar 

  18. Fairbrother A, García-Hemme E, Izquierdo-Roca V, Fontané X, Pulgarín-Agudelo FA, Vigil-Galán O, Pérez-Rodríguez A, Saucedo E. Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells. J Am Chem Soc, 2012, 134: 8018–8021

    Article  CAS  Google Scholar 

  19. Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu WC, Goodrich A, Noufi R. Co-evaporated Cu2ZnSnSe4 films and devices. Sol Energy Mat Sol C, 2012, 101: 154–159

    Article  CAS  Google Scholar 

  20. Chawla V, Clemens B. Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets. In: 38th IEEE Photovoltaic Specialists Conference. Austin, 2012

    Google Scholar 

  21. Ahmed S, Reuter KB, Gunawan O, Guo L, Romankiw LT, Deligianni H. A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv Energy Mater, 2012, 2: 253–259

    Article  CAS  Google Scholar 

  22. Ki W, Hillhouse HW. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent. Adv Energy Mater, 2011, 1: 732–735

    Article  CAS  Google Scholar 

  23. Guo QJ, Ford GM, Yang WC, Hages CJ, Hillhouse HW, Agrawal R. Enhancing the performance of CZTSSe solar cells with Ge alloying. Sol Energy Mat Sol C, 2012, 105: 132–136

    Article  CAS  Google Scholar 

  24. Yang W, Duan HS, Bob B, Zhou H, Lei B, Chung CH, Li SH, Hou WW, Yang Y. Novel solution processing of high-efficiency earthabundant Cu2ZnSn(S,Se)4 solar cells. Adv Mater, 2012, 24: 6323–6329

    Article  CAS  Google Scholar 

  25. Cao YY, Denny MS, Caspar JV, Farneth WE, Guo QJ, Ionkin AS, Johnson LK, Lu MJ, Malajovich I, Radu D, Rosenfeld HD, Choudhury KR, Wu W. High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J Am Chem Soc, 2012, 134: 15644–15647

    Article  CAS  Google Scholar 

  26. Guo Q, Hillhouse HW, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc, 2009, 131: 11672–11673

    Article  CAS  Google Scholar 

  27. Wang G, Zhao W, Tian Q, Huang L, Pan D, Cui Y, Gao S. Fabrication of Cu2ZnSn(S,Se)4 photovoltaic device by a low-toxic ethanol solution process. ACS Appl Mater Interf, 2013, 5: 10042–10047

    Article  CAS  Google Scholar 

  28. Hsu CJ, Duan HS, Yang W, Zhou H, Yang Y. Benign solutions and innovative sequential annealing processes for high performance Cu2ZnSn(S,Se)4 photovoltaics. Adv Energy Mater, 2014, 4, 1301287

    Article  Google Scholar 

  29. Wang Y, Gong H. Low temperature synthesized quaternary chalcogenide Cu2ZnSnS4 from nano-crystallite binary sulfides. J Electrochem Soc, 2011, 158: H800–H803

    Article  CAS  Google Scholar 

  30. Schorr S, Weber A, Honkimaki V, Schock HW. In-situ investigation of the kesterite formation from binary and ternary sulphides. Thin Solid Films, 2009, 517: 2461–2464

    Article  CAS  Google Scholar 

  31. Weber A, Mainz R, Unold T, Schorr S, Schock HW. In-situ XRD on formation reactions of Cu2ZnSnS4 thin films. Phys Status Solidi C, 2009, 6: 1245–1248

    Article  CAS  Google Scholar 

  32. Cheng AJ, Manno M, Khare A, Leighton C, Campbell SA, Aydil ES. Imaging and phase identification of Cu2ZnSnS4 thin films using confocal raman spectroscopy. J Vac Sci Technol A, 2011, 29: 051203

    Article  Google Scholar 

  33. Fernandes PA, Salome PMP, da Cunha AF. Growth and raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 2009, 517: 2519–2523

    Article  CAS  Google Scholar 

  34. Sarswat PK, Free ML, Tiwari A. Temperature-dependent study of the raman a mode of Cu2ZnSnS4 thin films. Phys Status Solidi B, 2011, 248: 2170–2174

    CAS  Google Scholar 

  35. Mitzi DB, Todorov TK, Gunawan O, Yuan M, Cao Q, Liu W, Reuter KB, Kuwahara M, Misumi K, Kellock AJ, Chey SJ, de Monsabert TG, Prabhakar A, Deline V, Fogel KE. Torwards marketable efficiency solution-processed kesterite and chalcopyrite photovoltaic devices. In: 35th IEEE Photovoltaic Specialists Conference. Honolulu, 2010

    Google Scholar 

  36. Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E. Cu2Zn1−x CdxSn(Se1−y Sy)4 solid solutions as absorber materials for solar cells. Phys Status Solidi A, 2008, 205: 167–170

    Article  CAS  Google Scholar 

  37. Himmrich M, Haeuseler H. Far infrared studies on stannite and wurtzstannite type compounds. Spectrochim Acta A, 1991, 47: 933–942

    Article  Google Scholar 

  38. Fernandes PA, Salome PMP, da Cunha AF. A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J Phys D-Appl Phys, 2010, 43: 215403

    Article  Google Scholar 

  39. Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S. Thermally evaporated Cu2ZnSnS4 solar cells. Appl Phys Lett, 2010, 97: 143508

    Article  Google Scholar 

  40. Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn (Se,S)4 solar cell. Prog Photovolt: Res Appl, 2012, 20: 6–11

    Article  CAS  Google Scholar 

  41. Yin X, Tang C, Sun L, Shen Z, Gong H. Study on phase formation mechanism of non- and near-stoichiometric CZTSSe film prepared by selenization of Cu-Sn-Zn-S precursors. Chem Mater, 2014, 26: 2005–2014

    Article  CAS  Google Scholar 

  42. Zhao Y, Han X, Li W, Liu L, Tanaka T. Synthesis of the Cu2ZnSn(S,Se)4 alloys with tunable phase structure and composition via a novel non-toxic solution method. Rsc Adv, 2013, 3: 26160–26165

    Article  CAS  Google Scholar 

  43. Lee HJ, Kwon BS, Park YR, Ahn JH, Kim JS, Lee NE, Shon JW. Inductively coupled plasma etching of chemical-vapor-deposited amorphous carbon in N2/H2/Ar chemistries. J Korean Phys Soc, 2010, 56: 1441–1445

    Article  CAS  Google Scholar 

  44. Urakawa T, Torigoe R, Matsuzaki H, Yamashita D, Uchida G, Koga K, Shiratani M, Setsuhara Y, Takeda K, Sekine M, Hori M. H2/N2 plasma etching rate of carbon films deposited by H-assisted plasma chemical vapor deposition. Jpn J Appl Phys, 2013: 5201AB01

    Google Scholar 

  45. Braginsky OV, Kovalev AS, Lopaev DV, Malykhin EM, Rakhimova TV, Rakhimov AT, Vasilieva AN, Zyryanov SM, Koshelev KN, Krivtsun VM, van Kaampen M, Glushkov D. Removal of amorphous C and Sn on Mo:Si multilayer mirror surface in hydrogen plasma and afterglow. J Appl Phys, 2012, 111: 093304

    Article  Google Scholar 

  46. Hansen TAR, Weber JW, Colsters PGJ, Mestrom D, van de Sanden MCM, Engeln R. Synergistic etch rates during low-energetic plasma etching of hydrogenated amorphous carbon. J Appl Phys, 2012, 112: 013302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JinSong Hu or Li-Jun Wan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Liu, J., Zhang, X. et al. Carbon-free Cu2ZnSn(S,Se)4 film prepared via a non-hydrazine route. Sci. China Chem. 57, 1552–1558 (2014). https://doi.org/10.1007/s11426-014-5145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5145-4

Keywords

Navigation