Skip to main content

Advertisement

Log in

Etching process optimization of non-vacuum fabricated Cu2ZnSnS4 solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin-film solar cell based on kesterite material Cu2ZnSnS4 (CZTS) is one of the third generation prospective solar cells replacing commercial Cu(Inx, Ga1−x)S2 (CIGS) material. However, the substitution of rare In and Ga material by Zn and Sn still requires further fabrication optimization. The secondary phases that formed during the fabrication process might have prohibited cell performance. Therefore, this work is essential to focus on introducing the etching process using 5% HCl with an etching time of 0, 100, 300, 480, and 600 s in order to minimize the secondary phases of Cu2S, SnS. SnS2, and ZnS during non-vacuum fabrication of Cu2ZnSnS4 kesterite. This Cu2ZnSnS4 active material works as a p-type semiconductor in thin layer solar cells. The film was deposited by the spin coating method with the standard structure of Mo/Cu2ZnSnS4/CdS/AZO/Ag. Characterization was carried out by X-ray diffraction (XRD) testing, scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDX), UV–Vis spectroscopy, Tauc Plot analysis, and light-harvesting efficiency. The best results showed that the introduction of etching treatment using 5% HCl for 300 s in the CZTS layer has successfully reduced the secondary phases of ZnS, Cu2S, and SnS2 by 28.9, 5.8, and 0.3%, respectively. This absorber layer has contributed to achieving the maximum light-harvesting efficiency (LHE) of 95.2% with a bandgap of 1.76 eV. Interestingly, the treatment does not significantly contribute to changing the surface morphology and the grain size of Cu2ZnSnS4 kesterite film, but it affects the pores on the surface of the absorber layer due to the ZnS secondary phase reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.H. Hasan, T.I. Mahlia, H. Nur, Renew. Sustain. Energy Rev. 16, 2316–2328 (2012)

    Article  Google Scholar 

  2. B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Sol. Energy Mater. Sol. Cells 90 549–573 (2006)

    Article  CAS  Google Scholar 

  3. E.C. Prima, N.N. Hidayat, B. Yuliarto, H.K. Dipojono, Spectrochim. Acta Part A 171, 112–125 (2017)

    Article  CAS  Google Scholar 

  4. R. Hidayati, H. Sutanto, Adv. Sci. Lett. 23, 2419–2423 (2017)

    Article  Google Scholar 

  5. E.C. Prima, B. Yuliarto, A. Nuruddin, G. Kawamura, A. Matsuda, New J. Chem. 42, 11616–11628 (2018)

    Article  CAS  Google Scholar 

  6. N. Kannan, D. Vakeesan, Renew. Sustain. Energy Rev. 62, 1092–1105 (2016)

    Article  Google Scholar 

  7. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, et al., Nat. Mater. 12, 1107 (2013)

    Article  Google Scholar 

  8. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, et al., Nat. Energy 3, 764 (2018)

    Article  CAS  Google Scholar 

  9. S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobé, et al., Energy Environ. Sci. 11, 582–593 (2018)

    Article  CAS  Google Scholar 

  10. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)

    Article  Google Scholar 

  11. S. Schorr, M. Tovar, H.J. Hoebler, H.W. Schock, Thin Solid Films 517, 2508–2510 (2009)

    Article  CAS  Google Scholar 

  12. S. Siebentritt, S. Schorr, Prog. Photovolt. Res. Appl. 20, 512–519 (2012)

    Article  CAS  Google Scholar 

  13. S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Pérez-Rodríguez, E. Saucedo, Adv. Mater. 31, 1806692 (2019)

    Article  Google Scholar 

  14. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Adv. Mater. 25, 1522–1539 (2013)

    Article  Google Scholar 

  15. S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, et al., Adv. Energy Mater. 6, 1502276 (2016)

    Article  Google Scholar 

  16. C.J. Hages, A. Redinger, S. Levcenko, H. Hempel, M.J. Koeper, R. Agrawal, et al., Adv. Energy Mater. 7, 1700167 (2017)

    Article  Google Scholar 

  17. T.J. Huang, X. Yin, G. Qi, H. Gong, Physica Status Solidi Rapid Res. Lett. 8, 735–762 (2014)

    Article  CAS  Google Scholar 

  18. T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, D. Raabe, Appl. Phys. Lett. 102, 042101 (2013)

    Article  Google Scholar 

  19. K. Timmo, M. Altosaar, J. Raudoja, M. Grossberg, M. Danilson, O. Volobujeva, E. Mellikov, IEEE Photovoltaic Specialists Conference, 001982-001985 (2010)

  20. M. Mousel, A. Redinger, R. Djemour, M. Arasimowicz, N. Valle, P. Dale, S. Siebentritt, Thin Solid Films 535, 83–87 (2013)

    Article  CAS  Google Scholar 

  21. E.C. Prima, B. Yuliarto, H.K. Dipojono, Adv. Mater. Res. 1112, 317–320 (2015)

    Article  Google Scholar 

  22. M. Guo, K. Xie, J. Lin, Z. Yong, C.T. Yip, L. Zhou, et al., Energy Environ. Sci. 5(12), 9881–9888 (2012)

    Article  CAS  Google Scholar 

  23. A. Fairbrother, E. García-Hemme, V. Izquierdo-Roca, X. Fontané, F.A. Pulgarín-Agudelo, O. Vigil-Galán et al., J. Am. Chem. Soc. 134(19), 8018–8021 (2012)

    Article  CAS  Google Scholar 

  24. A. Garahan, L. Pilon, J. Yin, I. Saxena, J. Appl. Phys. 101(1), 014320 (2007)

    Article  Google Scholar 

  25. K.A. Salman, Z. Hassan, K. Omar, Int. J. Electrochem. Sci. 7(1), 376–386 (2012)

    CAS  Google Scholar 

  26. S.J. Park, J.W. Cho, J.K. Lee, K. Shin, J.H. Kim, B.K. Min, Prog. Photovolt. Res. Appl. 22(1), 122–128 (2014)

    Article  CAS  Google Scholar 

  27. Y.V. Vorobiev, P.P. Horley, J. Hernández-Borja, H.E. Esparza-Ponce, R. Ramírez-Bon, P. Vorobiev, Nanoscale Res. Lett. 7(1), 483 (2012 )

    Article  Google Scholar 

  28. R. Chen, J. Fan, H. Li, C. Liu, Y. Mai, R. Soc. Open Sci. 5(1), 171163 (2018)

    Google Scholar 

  29. H. Miyazaki, M. Aono, H. Kishimura, H. Katagiri, Physica Status Solidi C 12(6), 749–752 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eka Cahya Prima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refantero, G., Prima, E.C., Setiawan, A. et al. Etching process optimization of non-vacuum fabricated Cu2ZnSnS4 solar cell. J Mater Sci: Mater Electron 31, 3674–3680 (2020). https://doi.org/10.1007/s10854-020-02925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02925-7

Navigation