Skip to main content
Log in

Photocatalysis with visible-light-active uranyl complexes

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Atomic energy is an important part of current energy resources. Production of nuclear weapons and applications of nuclear fuels in nuclear power plants have accumulated numerous spent fuels containing 238U compounds, which are critical nuclear materials. How to reduce the nuclear wastes and to make use of the spent uranium are key scientific issues of environmental and nuclear science. We have reviewed here the physiochemical properties and photocatalytic mechanisms of homogeneous and heterogeneous uranium-containing materials. The current research efforts demonstrate that spent fuels can become promising new photocatalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang D, van Gunsteren WF. Recent advances in computational actinide chemistry. Prog Chem, 2011, 23: 1566–1581

    CAS  Google Scholar 

  2. Fox AR, Bart SC, Meyer K, Cummins CC. Towards uranium catalysts. Nature, 2008, 455: 341–349

    CAS  Google Scholar 

  3. Ephritikhine M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Chem Inform, 2006, 37: 2501–2516

    Google Scholar 

  4. Albrecht-Schmitt TE. Organometallic and Coordination Chemistry of the Actinides. Springer, 2008. Vol. 127

    Google Scholar 

  5. Kaltsoyannis N, Hay PJ, Li J, Blaudeau J-P, Bursten B. Theoretical studies of the electronic structure of compounds of the actinide elements. In: Morss L, Edelstein N, Fuger J, Eds. The Chemistry of the Actinide and Transactinide Elements. Springer, 2006. 1893–2012

    Google Scholar 

  6. Li J, Bursten B. The electronic structure of organoactinide complexes via relativistic density functional theory: Applications to the actinocene complexes. In: Cundari RT, Ed. Computational organometallic chemistry. New York: Marcel Dekker, 2001. 345–379

    Google Scholar 

  7. Natrajan LS. Developments in the photophysics and photochemistry of actinide ions and their coordination compounds. Coordin Chem Rev, 2012, 256: 1583–1603

    CAS  Google Scholar 

  8. Wang D, van Gunsteren WF, Chai Z. Recent advances in computational actinoid chemistry. Chem Soc Rev, 2012, 41: 5836–5865

    CAS  Google Scholar 

  9. Hayton TW, Boncella JM, Scott BL, Palmer PD, Batista ER, Hay PJ. Synthesis of imido analogs of the uranyl ion. Science, 2005, 310: 1941–1943

    CAS  Google Scholar 

  10. Denning RG. Electronic structure and bonding in actinyl iIons and their analogs. J Phys Chem A, 2007, 111: 4125–4143

    CAS  Google Scholar 

  11. Boncella JM. Inorganic chemistry: Uranium gets a reaction. Nature, 2008, 451: 250–252

    CAS  Google Scholar 

  12. Hu H-S, Wu G-S, Li J. Theoretical investigations on actinide complexes with multiple-bonds. J Nucl Radiochem, 2009, 31: 25–34

    Google Scholar 

  13. Kannan S, Vaughn AE, Weis E. M, Barnes CL, Duval PB. Anhydrous photochemical uranyl (VI) reduction: Unprecedented retention of equatorial coordination accompanying reversible axial oxo/alkoxide exchange. J Am Chem Soc, 2006, 128: 14024–14025

    CAS  Google Scholar 

  14. Bühl M, Kabrede H, Diss R, Wipff G. Effect of hydration on coordination properties of uranyl (VI) complexes. A first-principles mMolecular dynamics study. J Am Chem Soc, 2006, 128: 6357–6368

    Google Scholar 

  15. Hagberg D, Karlström G, Roos BO, Gagliardi L. The coordination of uranyl in water: A combined quantum chemical and molecular simulation study. J Am Chem Soc, 2005, 127: 14250–14256

    CAS  Google Scholar 

  16. Bühl M, Diss R, Wipff G. Coordination environment of aqueous uranyl (VI) ion. J Am Chem Soc, 2005, 127: 13506–13507

    Google Scholar 

  17. Sundararajan M, Campbell AJ, Hillier IH. Catalytic cycles for the reduction of [UO2]2+ by cytochrome c7 proteins proposed from DFT calculations. J Phys Chem A, 2008, 112: 4451–4457

    CAS  Google Scholar 

  18. Tsushima S. Photochemical reduction of UO2 2+ in the presence of alcohol studied by density functional theory calculations. Inorg Chem, 2009, 48: 4856–4862

    CAS  Google Scholar 

  19. Nagaishi R, Katsumura Y, Ishigure K, Aoyagi H., Yoshida Z, Kimura T, Kato Y. Photoreduction of the uranyl ion in aqueous solution: II. Alcohols in acid solutions. J Photoch Photobio A, 2002, 146: 157–161

    CAS  Google Scholar 

  20. Arnold PL, Patel D, Wilson C, Love JB. Reduction and selective oxo group silylation of the uranyl dication. Nature, 2008, 451: 315–317

    CAS  Google Scholar 

  21. Vidya K, Kamble V, Gupta N, Selvam P. An in situ FT-IR study of photo-oxidation of alcohols over uranyl-anchored MCM-41: Possible reaction pathways. J Catal, 2007, 247: 1–19

    CAS  Google Scholar 

  22. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    CAS  Google Scholar 

  23. Emeline AV, Kuznetsov VN, Rybchuk VK, Serpone N. Visibleight-active titania photocatalysts: The case of N-soped TiO2s-roperties and some fundamental issues. Int J Photoenergy, 2008, 2008

  24. Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Sur Sci Rep, 2008, 63: 515–582

    CAS  Google Scholar 

  25. Yoon TP, Ischay MA, Du J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem, 2010, 2: 527–532

    CAS  Google Scholar 

  26. Kannan S, Moody MA, Barnes CL, Duval PB. Fluoride abstraction and reversible photochemical reduction of cationic uranyl (VI) phosphine oxide complexes. Inorg Chem, 2006, 45: 9206–9212

    CAS  Google Scholar 

  27. Burrows HD, Kemp TJ. The photochemistry of the uranyl ion. Chem Soc Rev, 1974, 3: 139–165

    CAS  Google Scholar 

  28. Bakac A, Bolletta F, Gandolfi MT, Maestri M. Top Curr Chem, 1978, 75: 1

    Google Scholar 

  29. Vidya K, Kamble VS, Selvam P, Gupta NM. Uranyl-anchored MCM-41 as a highly efficient photocatalyst for the complete oxidation of methanol under sunlight. Appl Catal B-Environ, 2004, 54: 145–154

    CAS  Google Scholar 

  30. Dai S, Metcalf D H, Del Cul GD, Toth LM. Spectroscopic investigation of the photochemistry of uranyl-doped sol-gel glasses immersed in ethanol. Inorg Chem, 1996, 35: 7786–7790

    Google Scholar 

  31. McCleskey TM, Burns CJ, Tumas W. Uranyl photochemistry with alkenes: Distinguishing between H-atom abstraction and electron transfer. Inorg Chem, 1999, 38: 5924–5925

    CAS  Google Scholar 

  32. Bakac A, Espenson JH. Autoxidation of uranium (V). Catalysis and inhibition by copper ions. Inorg Chem, 1995, 34: 1730–1735

    CAS  Google Scholar 

  33. Suib SL, Carrado KA. Uranyl clay photocatalysts. Inorg Chem, 1985, 24: 863–867

    CAS  Google Scholar 

  34. Wang WD, Bakac A, Espenson JH. Uranium(VI)-catalyzed photooxidation of hydrocarbons with molecular oxygen. Inorg Chem, 1995, 34: 6034–6039

    CAS  Google Scholar 

  35. Sarakha M, Bolte M, Burrows HD. Electron-transfer oxidation of chlorophenols by uranyl ion excited state in aqueous solution: steady-state and nanosecond flash photolysis studies. J Phys Chem A, 2000, 104: 3142–3149

    CAS  Google Scholar 

  36. Krishna V, Kamble VS, Gupta NM, Selvam P. Uranyl-anchored MCM-41 as a highly efficient photocatalyst in the oxidative destruction of short chain linear alkanes: An in situ FTIR study. J Phys Chem C, 2008, 112: 15832–15843

    CAS  Google Scholar 

  37. Su J, Wang YL, Wei F, Schwarz WHE, Li J. Theoretical study of the luminescent states and electronic spectra of UO2Cl2 in an argon matrix. J Chem Theory Comput, 2011, 7: 3293–3303

    CAS  Google Scholar 

  38. Su J, Zhang K, Schwarz WHE, Li J. Uranyl-glycine-water complexes in Solution: Comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties. Inorg Chem, 2011, 50: 2082–2093

    CAS  Google Scholar 

  39. Wei F, Wu G, Schwarz WHE, Li J. Geometries, electronic structures, and excited states of UN2, NUO+, and UO2 2+: A combined CCSD(T), RAS/CASPT2 and TDDFT study. Theor Chem Acc, 2011, 129: 467–481

    CAS  Google Scholar 

  40. Dau PD, Su J, Liu HT, Liu JB, Huang DL, Li J, Wang LS. Observation and investigation of the uranyl tetrafluoride dianion (UO2F4 2−) and its solvation complexes with water and acetonitrile. Chem. Sci, 2012, 3: 1137–1146

    CAS  Google Scholar 

  41. Dau PD, Su J, Liu HT, Huang DL, Li J, Wang LS. Photoelectron spectroscopy and the electronic structure of the uranyl tetrachloride dianion: UO2Cl4 −2. J Chem Phys, 2012, 137: 064315–8

    Google Scholar 

  42. Balzani V, Carassiti V. Photochemistry of Coordination Compounds. London: Academic Press, 1970

    Google Scholar 

  43. Burrows HD, Formosinho SJ, Miguel MDG, Coelho FP. Quenching of the luminescent state of the uranyl ion (UO2 2+) by metal ions: Evidence for an electron transfer mechanism. J Chem Soc, Faraday Trans 1, 1976, 72: 163–171

    CAS  Google Scholar 

  44. Suib SL, Kostapapas A, Psaras D. Photoassisted catalytic oxidation of isopropyl alcohol by uranyl-exchanged zeolites. J Am Chem Soc, 1984, 106: 1614–1620

    CAS  Google Scholar 

  45. Selbin J, Ortego JD. Chemistry of uranium(V). Chem Rev, 1969, 69: 657–671

    CAS  Google Scholar 

  46. Roundhill DM. Photochemistry and Photophysics of Metal Complexes. New York: Plenum Press, 1996

    Google Scholar 

  47. Sakuraba S, Matsushima R. Photochemical reactions of uranyl Ions with organic compounds. II. The mechanism of the photo-oxidation of alcohols by uranyl ions. Bull Chem Soc Japn, 1970, 43: 2359–2363

    CAS  Google Scholar 

  48. Bergfeldt TM, Waltz WL, Xu X, Sedlák P, Dreyer U, Möckel H, Lilie J, Stephenson JW. Photobehavior of aqueous uranyl ion and photo-oxygenation of isobutane using light from the visible region. Can J Chem, 2003, 81: 219–229

    CAS  Google Scholar 

  49. Sarakha M, Bolte M, Burrows HD. The photo-oxidation of 2,6-dimethylphenol and monophenylphenols by uranyl ion in aqueous solution. J Photoch Photobio A, 1997, 107: 101–106

    CAS  Google Scholar 

  50. Mao Y, Bakac A. Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen. J Phys Chem, 1996, 100: 4219–4223

    CAS  Google Scholar 

  51. Sergeeva G, Chibisov A, Levshin L, Karyakin A. Deactivation pathways of excited uranyl ions in solutions. J Chem Soc, Chem Commun, 1974, 159–160

    Google Scholar 

  52. Sergeeva GI, Chibisov AK, Levshin LV, Karyakin AV. A flash photolysis study of photochemical reactions of uranyl ions. J Photochem, 1976, 5: 253–264

    CAS  Google Scholar 

  53. Burrows HD, Formosinho SJ. Uranyl luminescence quenching. An experiment in photochemistry and kinetics. J Chem Educ, 1978, 55: 125

    CAS  Google Scholar 

  54. Suib SL, Tanguay JF, Occelli ML. Comparison of the photochemical and photophysical properties of clays, pillared clays, and zeolites. J Am Chem Soc, 1986, 108: 6972–6977

    CAS  Google Scholar 

  55. Brinker CJ, Scherer G. Sol-Gel Science: The Physics And Chemistry Of Sol-Gel Processing. San Diego: Academic Press, 1990

    Google Scholar 

  56. Reisfeld R, Jorgensen CK. Chemistry, Spectroscopy and Applications of Sol-Gel Glasses (Structure and Bonding). Springer-Verlag, 1991

    Google Scholar 

  57. Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 1993, 261: 1299–1303

    CAS  Google Scholar 

  58. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710–712

    CAS  Google Scholar 

  59. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114: 10834–10843

    CAS  Google Scholar 

  60. Vidya K, Dapurkar SE, Selvam P, Badamali SK, Gupta NM. The entrapment of UO2 2+ in mesoporous MCM-41 and MCM-48 molecular sieves. Micropor Mesopor Mater, 2001, 50: 173–179

    CAS  Google Scholar 

  61. Kumar D, Pillai KT, Sudersanan V, Dey GK, Gupta NM. Hydrothermal synthesis and characterization of uranium-containing MCM-48 samples. Chem Mater, 2003, 15: 3859–3865

    CAS  Google Scholar 

  62. Vidya K, Dapurkar SE, Selvam P, Badamali SK, Kumar D, Gupta NM. Encapsulation, characterization and catalytic properties of uranyl ions in mesoporous molecular sieves. J Mol Catal A-Chem, 2002, 181: 91–97

    CAS  Google Scholar 

  63. Selvam P, Ravat VM, Krishna V. Selective oxidation of alkenes over uranyl-anchored mesoporous MCM-41 molecular sieves. J Phys Chem C, 2011, 115: 1922–1931

    CAS  Google Scholar 

  64. Gibson JK, Haire RG, Santos M, Marçalo J, Pires de Matos A. Oxidation studies of dipositive actinide ions, An2+ (An = Th, U, Np, Pu, Am) in the gas phase: Synthesis and characterization of the isolated uranyl, neptunyl, and plutonyl ions UO2 2+(g), NpO2 2+(g), and PuO2 2+(g). J Phys Chem A, 2005, 109: 2768–2781

    CAS  Google Scholar 

  65. Baird CP, Kemp TJ. Luminescence, spectroscopy, lifetimes and quenching mechanisms of excited states of uranyl and other actinide ions. Prog React Kine Mec, 1997, 22: 87–139

    CAS  Google Scholar 

  66. Real F, Vallet V, Marian C, Wahlgren U. Theoretical investigation of the energies and geometries of photoexcited uranyl(VI) ion: A comparison between wave-function theory and density functional theory. J Chem Phys, 2007, 127: 214302–11

    Google Scholar 

  67. Schreckenbach G, Hay PJ, Martin RL. Density functional calculations on actinide compounds: Survey of recent progress and application to [UO2X4]2− (X = F, Cl, OH) and AnF6 (An = U, Np, Pu). J Comput Chem, 1999, 20: 70–90

    CAS  Google Scholar 

  68. García-Hernández M, Willnauer C, Krüger S, Moskaleva LV, Rösch N. Systematic DFT study of gas phase and solvated uranyl and neptunyl complexes [AnO2X4]n (An = U, Np; X = F, Cl, OH, n = −2; X = H2O, n = +2). Inorg Chem, 2006, 45: 1356–1366

    Google Scholar 

  69. Berthet J-C, Thuery P, Ephritikhine M. The first actinyl cyanide. Chem Commun, 2007, 604–606

    Google Scholar 

  70. Sonnenberg JL, Hay PJ, Martin RL, Bursten BE. Theoretical investigations of uranyl-ligand bonding: Four- and five-coordinate uranyl cyanide, isocyanide, carbonyl, and hydroxide complexes. Inorg Chem, 2005, 44: 2255–2262

    CAS  Google Scholar 

  71. Zhou M, Zhao Y, Gong Y, Li J. Formation and characterization of the XeOO+ cation in solid argon. J Am Chem Soc, 2006, 128: 2504–2505

    CAS  Google Scholar 

  72. Xiao H, Hu H-S, Schwarz WE, Li J. Theoretical investigations of geometry, electronic structure and stability of UO6: Octahedral uranium hexoxide and its isomers. J Phys Chem A, 2010, 114: 8837–8844

    CAS  Google Scholar 

  73. Ding XL, Wu XN, Zhao YX, He SG. C-H bond activation by oxygen-centered radicals over atomic clusters. Accounts Chem Res 2011, 45: 382–390

    Google Scholar 

  74. Kenney-Wallace GA, Wilson JP, Farrell JF, Gupta BK. Direct determination of uranyl ion by nanosecond dye-laser spectroscopy. Talanta, 1981, 28: 107–113

    CAS  Google Scholar 

  75. Réal F, Vallet Vr, Wahlgren U, Grenthe I. Ab Initio study of the mechanism for photoinduced yl-oxygen exchange in uranyl(VI) in acidic aqueous solution. J Am Chem Soc, 2008, 130: 11742–11751

    Google Scholar 

  76. Szabó Z, Grenthe I. Reactivity of the “yl”-bond in uranyl(VI) complexes: 1. Rates and mechanisms for the exchange between the trans-dioxo oxygen atoms in (UO2)2(OH)2 2+ and mononuclear UO2(OH)n 2−n complexes with solvent water. Inorg Chem, 2007, 46: 9372–9378

    Google Scholar 

  77. Burns CJ, Sattelberger AP. Uranium(VI) oxo-alkoxide cluster synthesis via ligand redistribution. Inorg Chem, 1988, 27: 3692–3693

    CAS  Google Scholar 

  78. Arney DSJ, Burns CJ. Synthesis and structure of high-valent organouranium complexes containing terminal monooxo functional groups. J Am Chem Soc, 1993, 115: 9840–9841

    CAS  Google Scholar 

  79. Duval PB, Burns CJ, Buschmann WE, Clark DL, Morris DE, Scott BL. Reaction of the uranyl(VI) Ion (UO2 2+) with a triamidoamine ligand: preparation and structural characterization of a mixed-valent uranium(V/VI) oxo-imido dimer. Inorg Chem, 2001, 40: 5491–5496

    CAS  Google Scholar 

  80. Hill RJ, Kemp TJ, Allen DM, Cox A. Absorption spectrum, lifetime and photoreactivity towards alcohols of the excited state of the aqueous uranyl ion (UO2 2+). J Chem Soc, Faraday Trans, 1 1974, 70: 847–857

    CAS  Google Scholar 

  81. Burrows HD, Formosinho SJ, Saraiva PM. Photo-oxidation of poly(vinyl alcohol) by uranyl ion: A route to photoinitiated graft copolymerization. J Photoch Photobio A, 1992, 63: 67–73

    CAS  Google Scholar 

  82. Ahmad M, Cox A, Kemp TJ, Sultana Q. Physical and chemical quenching of excited uranyl ion by organic molecules studied by fluorimetric and laser flash photolysis methods. J Chem Soc Peak Trans 2, 1975, 1867–1872

    Google Scholar 

  83. Matsushima R, Sakuraba S. Quenching of the uranyl fluorescence by aromatic molecules. J Am Chem Soc, 1971, 93: 7143–7145

    CAS  Google Scholar 

  84. Matsushima R. Mechanism of quenching of the uranyl fluorescence by organic compounds. J Am Chem Soc, 1972, 94: 6010–6016

    CAS  Google Scholar 

  85. Billing R, Zakharova GV, Atabekyan LS, Hennig H. Luminescence quenching of *[UO2F4]2− in aqueous solutions by anions. J Photoch Photobio A, 1991, 59: 163–174

    CAS  Google Scholar 

  86. Andersson K, Malmqvist P-A, Roos BO. Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys, 1992, 96: 1218–1226

    CAS  Google Scholar 

  87. De Houwer S, Görller-Walrand C. Influence of complex formation on the electronic structure of uranyl. J Alloy Compd, 2001, 323–324: 683–687

    Google Scholar 

  88. Gorller-Walrand C, De Houwer S, Fluyt L, Binnemans K. Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. Phys Chem Chem Phys, 2004, 6: 3292–3298

    Google Scholar 

  89. Formosinho SJ, Miguel MGM, Burrows HD. Photophysics of the excited uranyl ion in aqueous solutions: Part 1-Reversible crossing. J Chem Soc, Faraday Trans 1, 1984, 80: 1717–1733

    CAS  Google Scholar 

  90. Park Y-Y, Sakai Y, Abe R, Ishii T, Harada M, Kojima T, Tomiyasu H. Deactivation mechanism of excited uranium(VI) complexes in aqueous solutions. J Chem Soc, Faraday Trans, 1990, 86: 55–60

    CAS  Google Scholar 

  91. Wang Z, Zachara JM, Gassman PL, Liu C, Qafoku O, Yantasee W, Catalano JG. Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochim Cosmochim Acta, 2005, 69: 1391–1403

    CAS  Google Scholar 

  92. Greatorex D, Hill RJ, Kemp TJ, Stone TJ. Electron spin resonance detection of radical intermediates during photo-oxidation by metal ions in solution. J Chem Soc, Faraday Trans 1, 1974, 70: 216–226

    CAS  Google Scholar 

  93. Yokoyama Y, Moriyasu M, Ikeda S. Electron transfer mechanism in quenching of uranyl luminescence by halide ions. J Inorg Nucl Chem, 1976, 38: 1329–1333

    CAS  Google Scholar 

  94. Heaven MC. Probing actinide electronic structure using fluorescence and multi-photon ionization spectroscopy. Phys Chem Chem Phys, 2006, 8: 4497–4509

    CAS  Google Scholar 

  95. Fonseca SM, Burrows HD, Miguel MG, Sarakha M, Bolte M. Photooxidation of cellulose acetate and cellobiose by the uranyl ion. Photochem Photobiol Sci, 2004, 3: 317–321

    CAS  Google Scholar 

  96. Suib SL, Coughlin DF, Otter FA, Conopask LF. Ion scattering spectroscopy and secondary ion mass spectrometry (ISS/SIMS) studies of zeolites. J Catal, 1983, 84: 410–422

    CAS  Google Scholar 

  97. Marcantonatos MD. Dual luminescence of uranyl and self-quenching in aqueous acidic solution. Inorg Chim Acta, 1978, 26: 41–46

    CAS  Google Scholar 

  98. Darmanyan AP, Khudyakov IV. Study of luminescent forms of the uranyl ion. Photoch Photobio, 1990, 52: 293–298

    CAS  Google Scholar 

  99. Azenha MEDG, Burrows HD, Formosinho SJ, Miguel MGM, Daramanyan AP, Khudyakov IV. On the uranyl ion luminescence in aqueous solutions. J Lumin, 1991, 48–49, Part 2: 522–526

    Google Scholar 

  100. Lopez M, Birch DJS. Characterisation of the dimer formed by hydrolysis of uranyl in aqueous solution and its role in the biexponential luminescence decay. Chem Phys Lett, 1997, 268: 125–132

    CAS  Google Scholar 

  101. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley Online Library: 1978

    Google Scholar 

  102. Paine RT, Kite MS. Photochemistry of uranium compounds. In lanthanide and actinide chemistry and spectroscopy. Am Chem Soc, 1980, 131: 369–380

    CAS  Google Scholar 

  103. Ursu I, Lupei V. EPR of uranium. Ions Citeseer, 1984, 6: 162–224

    CAS  Google Scholar 

  104. Miyake C, Yamana Y, Imoto S, Ohya-Nishiguchi H. Direct evidence of uranium(V) intermediates by electron spin resonance in photo-and electrolytic reduction processes of uranyl complexes in organic solutions. Inorg Chim Acta, 1984, 95: 17–21

    CAS  Google Scholar 

  105. Miyake C, Kondo T, Imoto S, Ohya-Nishiguchi H. Direct evidence of uranium(V) intermediates by electron spin resonance in photo- and electrolytic reduction processes of uranyl complexes in organic solutions. J Less Common Met, 1986, 122: 313–317

    CAS  Google Scholar 

  106. Lupei A, Lupei V, Ursu I. Luminescence and EPR of uranium-activated sodium fluoride. J Phys C Solid State Phys, 1982, 15: 5489

    CAS  Google Scholar 

  107. Lupei A, Lupei V. EPR and luminescence studies on high-valency uranium centres in CaF2. J Phys C Solid State Phys, 1979, 12: 1123

    CAS  Google Scholar 

  108. Lupei V, Lupei A, Ursu I. Pentavalent uranium in CaF2. J Phys C Solid State Phys, 1977, 10: 4587

    CAS  Google Scholar 

  109. Rehorek D. Photocatalytic systems. XIV. On the mechanism of the alcohol photooxidation by uranyl nitrate. Z Anorg Allg Chem, 1978, 443: 255–264

    CAS  Google Scholar 

  110. Greatorex D, Hill RJ, Kemp TJ, Stone TJ. Electron spin resonance detection of radical intermediates during photo-oxidation by metal ions in solution. J Chem Soc, Faraday Trans 1, 1974, 70: 216–226

    CAS  Google Scholar 

  111. Burrows HD, Formosinho SJ. Photochemical hydrogen abstractions as radiationless transitions. Part 3. Theoretical analysis of hydrogen abstraction by excited uranyl (UO2 2+) ion. J Chem Soc, Faraday Trans 2, 1977, 73: 201–208

    CAS  Google Scholar 

  112. Hill R. J, Kemp TJ, Allen DM, Cox A. Absorption spectrum, lifetime and photoreactivity towards alcohols of the excited state of the aqueous uranyl ion (UO2 2+). J Chem Soc, Faraday Trans 1, 1974, 70: 847–857

    CAS  Google Scholar 

  113. Graves CR, Kiplinger JL. Pentavalent uranium chemistry-synthetic pursuit of a rare oxidation state. Chem Commun, 2009, 3831–3853

    Google Scholar 

  114. Nagaishi R, Katsumura Y, Ishigure K, Aoyagi H, Yoshida Z, Kimura T. Photoreduction of uranyl ion in aqueous solution. I. With ethanol in sulphuric acid solutions. J Photoch Photobio A, 1996, 96: 45–50

    CAS  Google Scholar 

  115. Merlin A, Fouassier J-P. Photochemical investigations into cellulosic materials, IV. Photosensitized free radical generation in cellulose acetate and oligosaccharide compounds. Macromol Mater Eng, 1982, 108: 185–195

    CAS  Google Scholar 

  116. Chang CR, Wang YG, Li J. Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. Nano Res 2011, 4: 131–142

    CAS  Google Scholar 

  117. Chang CR, Yang XF, Long B, Li J. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: Understanding the catalytic behavior of bulk gold. ACS Catal, 2013, 3: 1693–1699

    CAS  Google Scholar 

  118. Suib SL, Zerger RP, Stucky GD, Emberson RM, Debrunner PG, Iton LE. Oxidation states of europium in zeolites. Inorg Chem, 1980, 19: 1858–1862

    CAS  Google Scholar 

  119. Quayle WH, Lunsford JH. Tris(2,2′-bipyridine)ruthenium(III) in zeolite Y: Characterization and reduction on exposure to water. Inorg Chem, 1982, 21: 97–103

    CAS  Google Scholar 

  120. Kuznicki SM, Eyring EM. “Water splitting” by titanium exchanged zeolite A. J Am Chem Soc, 1978, 100: 6790–6791

    CAS  Google Scholar 

  121. Pacchioni G, Skuja L, Griscom DL. Defects in SiO2 and Related Dielectrics: Science and Technology. Springer, 2000. Vol. 2

    Google Scholar 

  122. Lim KH, Zakharieva O, Shor AM, Rösch N. Modeling metal adsorption at amorphous silica: Gold atoms and dimers as example. Chem Phys Lett, 2007, 444: 280–286

    CAS  Google Scholar 

  123. Nemana S, Gates BC. Redox chemistry of tantalum clusters on silica characterized by X-ray absorption spectroscopy. J Phys Chem B, 2006, 110: 17546–17553

    CAS  Google Scholar 

  124. Del Vitto A, Pacchioni G, Lim KH, Rösch N, Antonietti J-M, Michalski M, Heiz U, Jones H. Gold atoms and dimers on amorphous SiO2: Calculation of optical properties and cavity ringdown specoscopy measurements. J Phys Chem B, 2005, 109: 19876–19884

    Google Scholar 

  125. Nielsen PE, Hiort C, Sonnichsen SH, Buchardt O, Dahl O, Norden B. DNA binding and photocleavage by uranyl(VI)(UO2 2+) salts. J Am Chem Soc, 1992, 114: 4967–4975

    CAS  Google Scholar 

  126. Møllegaard NE, Lindemose S, Nielsen PE. Uranyl photoprobing of nonbent A/T- and bent A-Tracts. A difference of flexibility. Biochemistry, 2005, 44: 7855–7863

    Google Scholar 

  127. Jeppesen C, Nielsen PE. Uranyl mediated photofootprinting reveals strong E.coli RNA polymerase-DNA backbone contacts in the +10 region of the DeoP1 promoter open complex. Nucleic Acids Res, 1989, 17: 4947–4956

    CAS  Google Scholar 

  128. Møllegaard NE, Rasmussen PB, Valentin-Hansen P, Nielsen PE. Characterization of promoter recognition complexes formed by CRP and CytR for repression and by CRP and RNA polymerase for activation of transcription on the Escherichia coli deoP2 promoter. J Biol Chem, 1993, 268: 17471–17477

    Google Scholar 

  129. Møllegaard NE, Murchie AI, Lilley DM, Nielsen PE. Uranyl photoprobing of a four-way DNA junction: Evidence for specific metal ion binding. EMBO J, 1994, 13: 1508–1513

    Google Scholar 

  130. Møllegaard NE, Nielsen PE. Uranyl photoprobing of DNA structures and drug-DNA complexes. Methods Mol Biol, 1997, 90: 43–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GuoQing Zhang or Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Su, J., Mitchell, E. et al. Photocatalysis with visible-light-active uranyl complexes. Sci. China Chem. 56, 1671–1681 (2013). https://doi.org/10.1007/s11426-013-4965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4965-y

Keywords

Navigation