Skip to main content
Log in

Electrodeposited Ni and Ni-Co alloys using cysteine and conventional ultrasound waves

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ni-Co alloys were electroplated from sulphate electrolyte using addition agents including sodium gluconate, boric acid and cysteine on copper foil by the galvanostatic technique and ultrasound waves. The chemical composition, surface morphologies, crystalline structure and hardness of the Ni-Co alloys were studied using energy dispersive spectroscopy, scanning electron microscope, X-ray diffraction and Vickers testing method, respectively. The effect of current density and addition agents on the microstructure and morphology of Ni-Co alloys were examined. The appropriate concentration of additives and ultrasound waves were found to produce fine and smooth crystals leading to higher hardness of Ni-Co alloys. The microhardness of the Ni-Co alloys was varied between 4860–7530 HV. The surface morphology of coatings was changed from granular to fine due to using of gluconate, boric acid, cysteine and ultrasound waves. The mechanical properties of nanocrystalline Ni-Co alloys showed an increase of the hardness with the growing of Ni content in the alloy. The X-ray diffraction studies indicated that nanocrystalline structure was face-centred cubic for pure Ni and Ni-Co alloys with Co content in the range of 1–75 wt.%. A hexagonal closed-package structure was obtained for pure Co and Ni-Co alloys with the cobalt content with range of 75–99 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landolt D. Electrodeposition science and technology in the last quarter of the twentieth century. J Electrochem Soc, 2002, 149: S9–S20

    Article  CAS  Google Scholar 

  2. Orinakova R, Turonova A, Kladekova D, Galova M, Smith R. Recent developments in the electrodeposition of nickel and some nickel-based alloys. J Appl Electochem, 2006, 36: 957–972

    Article  CAS  Google Scholar 

  3. Hansal W, Tury B, Halmdienst M, Varsanyi M, Kautek W. Pulse reverse plating of Ni-Co alloys: Deposition kinetics of Watts, sulfamate and chloride electrolytes. Electrochim Acta, 2006, 52: 1145–1151

    Article  CAS  Google Scholar 

  4. Jensen J, Pocwiardowski P, Persson P, Hultman L, Moller P. Acoustic streaming enhanced electrodeposition of nickel. Chem Phy Lett, 2003, 368: 732–737

    Article  CAS  Google Scholar 

  5. Meyers M, Mishra A, Benson, Prog D. Mechanical properties of nanocrystalline materials. Mater Sci, 2006, 51: 427–556

    CAS  Google Scholar 

  6. Mason T. Advances in Sonochemistry 4th edition. London: JAI Press Ltd. p 230

  7. Prasad P, Vasudevan R, Seshadri S. Effect of ultrasonic agitation on surface finish of electrodeposits. Ind J Eng Mater Sci, 1994, 1: 178–180

    CAS  Google Scholar 

  8. Schuh C, Nieh T, Yamasaki T. Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scripta Mater, 2002, 46: 735–740

    Article  CAS  Google Scholar 

  9. Giga A, Kimoto Y, Takigawa Y. Demonstration of an inverse Hall-Petch relationship in electrodeposited nanocrystalline Ni-W alloys through tensile testing. Scripta Mater, 2006, 55: 143–146

    Article  CAS  Google Scholar 

  10. Palumbo G, Gonzalez F, Brennenstuhl A, Erb U. In-situ nuclear steam generator repair using electrodeposited nanocrystalline nickel. Nanostruct Mater, 1997, 9: 737–746

    Article  CAS  Google Scholar 

  11. Li Y, Jiang H, Pang L. Novel application of nanocrystalline nickel electrodeposit: Making good diamond tools easily, efficiently and economically. Surf Coat Technol, 2007, 201: 5925–5930

    Article  CAS  Google Scholar 

  12. Weston D, Harris S, Shipway P, Weston N, Yap G. Establishing relationships between bath chemistry, electrodeposition and microstructure of Co-W alloy coatings produced from a gluconate bath. Electrochim Acta, 2010, 55: 5695–5708

    Article  CAS  Google Scholar 

  13. Bhandari A, Hearne S, Sheldon B, Soni S. Microstructural origins of saccharin-induced stress reduction in electrodeposited Ni. J Electrochem Soc, 2009, 156: D279–D282

    Article  CAS  Google Scholar 

  14. Klung H, Alexander L. New York: John Wiley, 1974. p 618

  15. Walker R, Walker C. New explanation for the brightness of electrodeposits produced by ultrasound. Ultrasonics, 1975, 13: 79–82

    Article  CAS  Google Scholar 

  16. Franklin T. Some mechanisms of action of additives in electrodeposition processes. Surf Coat Tech, 1987, 30: 415

    Article  CAS  Google Scholar 

  17. Gomez E, Pane S, Valles E. Electrodeposition of Co-Ni and Co-Ni-Cu systemsin sulphate-citrate medium. Electrochim Acta, 2005, 51: 146–153

    Article  CAS  Google Scholar 

  18. Wei G, Ge H, Wu Q, Yu Y, Wang X, Chen C. Co-Pt-W thin films electrodeposited from sulphate-gluconate baths. Mater Chem Phys, 2009, 118: 57–62

    Article  CAS  Google Scholar 

  19. Abd El Rehim S, Ibrahim M, Dankeria M. Electrodeposition of cobalt from gluconate electrolyte. J Appl Electrochem, 2002, 32: 1019–1027

    Article  CAS  Google Scholar 

  20. Abd El Rehim S, Abd El Wahaab S, Rashwan S, Anwar Z. Electroplating of a Co-Cu alloy from a citrate bath containing boric acid. J Chem Technol Biotechnol, 2000, 75: 237–244

    Article  Google Scholar 

  21. Karwas C, Hepel T. Influence of boric acid on electrodeposition and stripping of Ni-Zn alloys. J Electrochem Soc, 1988, 135: 839–844

    Article  CAS  Google Scholar 

  22. Horkans J. On the role of buffers and anions in NiFe electrodeposition. J Electrochem Soc, 1979, 126: 1861–1867

    Article  CAS  Google Scholar 

  23. Zech N, Landolt D. The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes. Electrochim Acta, 2000, 45: 3461–3471

    Article  CAS  Google Scholar 

  24. Karwas C, Hepel T. Morphology and composition of electrodeposited cobalt-zinc alloys and the influence of boric acid. J Electrochem Soc, 1989, 136: 1672–1678

    Article  CAS  Google Scholar 

  25. Supicova M, Rozik R, Trnkova L, Orinakova R, Galova M. Influence of boric acid on the electrochemical deposition of Ni. J Solid State Electrochem, 2006, 10: 61–68

    Article  CAS  Google Scholar 

  26. Srivastava S, Raju E, Mathur H. Thermodynamics of the Interaction of Ni(II) ion with Cysteine. J Inorg Nucl Chem, 1973, 35: 253–259

    Article  CAS  Google Scholar 

  27. Osaka T, Sawaguchi T, Mizutani F, Yokoshima T, Takai M, and Okinaka Y. Effects of saccharin and thiourea on sulfur inclusion and coercivity of electroplated soft magnetic CoNiFe film. J Electrochem Soc, 1999, 146: 3295–3299

    Article  CAS  Google Scholar 

  28. Ciszewski A, Posluszny S, Milczarek G, Baraniak M. Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte. Surf Coat Tech, 2004, 183: 127–133

    Article  CAS  Google Scholar 

  29. Vijayakumar J, Mohan S, Yadav S. Effects of primary dicarboxylic acids on microstructure and mechanical properties of sub-microcrystalline Ni-Co alloys. J Alloys Comp, 2011, 509: 9692–9695

    Article  CAS  Google Scholar 

  30. Tury B, Lakatos-Varsányi M, Roy S. Ni-Co alloys plated by pulse currents. Surf Coat Tech, 2006, 200: 6713–6717

    Article  CAS  Google Scholar 

  31. Srivastava M, Selvi V, Grips V, Rajam K. Corrosion resistance and microstructure of electrodeposited nickel-cobalt alloy coatings. Surf Coat Tech, 2006, 201: 3051–3060

    Article  CAS  Google Scholar 

  32. Wang L, Gao Y, Xuea Q, Liua H, Xu T. Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits. Appl Surf Sci, 2005, 242: 326–332

    Article  CAS  Google Scholar 

  33. Chung C, Chang W. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films. Thin Solid Films, 2009, 517: 4800–4804

    Article  CAS  Google Scholar 

  34. Yang Y, Deng B, Wen Z. Preparation of Ni-Co alloy foils by electrodeposition. Adv Chem Eng Sci, 2011, 1: 27–32

    Article  CAS  Google Scholar 

  35. Orinakova R, Orinak A, Vering G, Talian I, Smith R, Arlinghaus H. Influence of pH on the electrolytic deposition of Ni-Co films. Thin Solid Films, 2008, 516: 3045–3050

    Article  CAS  Google Scholar 

  36. Karpuza A, Kockara H, Alper M, Karaagac O, Haciismailoglu M. Electrodeposited Ni-Co films from electrolytes with different Co contents. Appl Surf Sci, 2012, 258: 4005–4010

    Article  Google Scholar 

  37. Li Y, Jiang H, Wang D, Ge H. Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni-Co alloys. Surf Coat Tech, 2008, 202: 4952–4956

    Article  CAS  Google Scholar 

  38. Ogihara H, Udagawa K, Saji T. Effect of boron content and crystalline structure on hardness in electrodeposited Ni-B alloy films. Surf Coat Tech, 2012, 206: 2933–2940

    Article  CAS  Google Scholar 

  39. Beacon S, Riley B. General Motors Engrg J, 1959, 6: 21

    Google Scholar 

  40. Rafailovic L, Karnthaler H, Trisovic T, Minic D. Microstructure and mechanical properties of disperse Ni-Co alloys electrodeposited on Cu substrates. Mater Chem Phys, 2010, 120: 409–416

    Article  CAS  Google Scholar 

  41. Kochergin S, Vyaselva G. Electrodeposition of metals in ultrasonic fields. New York: Consultants Bureau, 1966. 19

    Google Scholar 

  42. Mason T. Advances in sonochemistry, London: JAI Press Ltd. 1996, 4: 233–234

    Google Scholar 

  43. Zimmerman A, Palumbo G, Aust K, Erb U. Mechanical properties of nickel silicon carbide nanocomposites. Mater Sci Eng A, 2002, 328: 137–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosaad Negem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Feky, H., Negem, M., Roy, S. et al. Electrodeposited Ni and Ni-Co alloys using cysteine and conventional ultrasound waves. Sci. China Chem. 56, 1446–1454 (2013). https://doi.org/10.1007/s11426-013-4935-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4935-4

Keywords

Navigation