Skip to main content
Log in

Wellposedness of some quasi-linear Schrödinger equations

  • Articles
  • Invited Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This article is devoted to the study of a quasilinear Schrödinger equation coupled with an elliptic equation on the metric g. We first prove that, in this context, the propagation of regularity holds which ensures local wellposedness for initial data small enough in \(\dot H^{\tfrac{1} {2}} \) and belonging to the Besov space \(\dot B_{2,1}^{\tfrac{3} {2}} \). In a second step, we establish Strichartz estimates for time dependent rough metrics to obtain a lower bound of the time existence which only involves the \(\dot B_{2,\infty }^{1 + \varepsilon } \) norm on the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anker J-P, Pierfelice V. Nonlinear Schrödinger equation on real hyperbolic spaces. Ann l’Institut Henri Poincare Non Linear Anal, 2009, 26: 1853–1869

    Article  MATH  MathSciNet  Google Scholar 

  2. Anton R. Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull Soc Math France, 2008, 136: 27–65

    MATH  MathSciNet  Google Scholar 

  3. Bahouri H, Chemin J-Y. Équations d’ondes quasilinéaires et inégalités de Strichartz. Amer J Math, 1999, 121: 1337–1377

    Article  MATH  MathSciNet  Google Scholar 

  4. Bahouri H, Chemin J-Y. Équations d’ondes quasilinéaires et effet dispersif. Internat Math Res News, 1999, 21: 1141–1178

    Article  MathSciNet  Google Scholar 

  5. Bahouri H, Chemin J-Y. Microlocal analysis, bilinear estimates and cubic quasilinear wave equation. Astéristique, 2003, 248: 93–141

    MathSciNet  Google Scholar 

  6. Bahouri H, Chemin J-Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren Math Wissenschaften, vol. 343. Berlin: Springer, 2011

    MATH  Google Scholar 

  7. Banica V. Dispersion and Strichartz inequalities for Schrödinger equations with singular coefficients. SIAM J Math Anal, 2003, 35: 868–883

    Article  MATH  MathSciNet  Google Scholar 

  8. Bejenaru I, Ionescu A, Kenig C, et al. Global Schrödinger maps in dimensions d ⩾ 2: Small data in the critical Sobolev spaces. Ann Math, 2011, 173: 1443–1506

    Article  MATH  MathSciNet  Google Scholar 

  9. de Bouard A, Hayashi N, Saut J-C. Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun Math Phys, 1997, 189: 73–105

    Article  MATH  Google Scholar 

  10. Bouclet J-M, Tzvetkov N. Estimates for long range perturbations. Amer J Math, 2007, 129: 1565–1609

    Article  MATH  MathSciNet  Google Scholar 

  11. Burq N. Estimations de Strichartz pour des perturbations longue portée de l’opérateur de Schrödinger. Séminaire E.D.P de l’Ecole polytechnique, 2001–2002

    Google Scholar 

  12. Burq N, Gérard P, Tzvetkov N. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer J Math, 2004, 126: 569–605

    Article  MATH  MathSciNet  Google Scholar 

  13. Burq N, Planchon F. Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications. J Funct Anal, 2006, 236: 265–298

    Article  MATH  MathSciNet  Google Scholar 

  14. Coifman R, Meyer Y. Au delà des opérateurs pseudo-différentiels (in French). [Beyond Pseudodifferential Operators] With an English summary. Astérisque, 57. Paris: Soc Math France, 1978

    Google Scholar 

  15. Colin M. On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension. Comm Partial Differential Equations, 2002, 27: 325–354

    Article  MATH  MathSciNet  Google Scholar 

  16. Ginibre J, Velo G. Smoothing properties and retarded estimates for some dispersive evolution equations. Commun Math Phys, 144, pages 163–188.

  17. Ichinose W. Some remarks on the Cauchy problem for Schrödinger type equations. Osaka J Math, 1984, 21: 565–581

    MATH  MathSciNet  Google Scholar 

  18. Keel M, Tao T. Endpoint Strichartz estimates. Amer J Math, 1998, 120: 995–980

    Article  MathSciNet  Google Scholar 

  19. Kenig C E, Ponce G, Vega L. The Cauchy problem for quasi-linear Schrödinger equations. Invent Math, 2004, 158: 343–388

    Article  MATH  MathSciNet  Google Scholar 

  20. Marzuola J, Metcalfe J, Tataru D. Quasilinear Schrödinger equations I: Small data and quadratic interactions. Adv Math, 2012, 231: 1151–1172

    Article  MATH  MathSciNet  Google Scholar 

  21. Marzuola J, Metcalfe J, Tataru D. Quasilinear Schrödinger equations II: Small data and cubic nonlinearities. Kyoto J Math, 2015, in press

    Google Scholar 

  22. Mizohata S. On some Schrödinger type equations. Japan Acad Proc Ser A Math Sci, 1981, 57: 81–84

    Article  MATH  MathSciNet  Google Scholar 

  23. Robbiano L, Zuily C. Strichartz estimates for Schrödinger equations with variable coefficients. Mémoires de la Société Mathématique de France, 2005, 101–102, 208pp

  24. Salort D. Dispersion and Strichartz inequalities for the one-dimensional Schrödinger equation with variable coefficients. Internat Math Res Not, 2005, 11: 687–700

    Article  MathSciNet  Google Scholar 

  25. Salort D. Dispersion and Strichartz estimates for the Liouville equation. J Differential Equations, 2007, 233: 543–584

    Article  MATH  MathSciNet  Google Scholar 

  26. Staffilani G, Tataru D. Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm Partial Differential Equations, 2002, 27: 1337–1372

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Chemin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemin, JY., Salort, D. Wellposedness of some quasi-linear Schrödinger equations. Sci. China Math. 58, 891–914 (2015). https://doi.org/10.1007/s11425-015-4993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-4993-5

Keywords

MSC(2010)

Navigation