Skip to main content
Log in

Fostering scientific understanding and epistemic beliefs through judgments of promisingness

  • Research Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

The evaluation of promisingness is central to knowledge building and knowledge creation but remains largely unexplored. As part of a design-based research program to support promisingness judgments, the present study implemented an intervention in a sixth grade science class, with the goal of exploring the potential of promisingness judgments to foster scientific understanding and epistemic beliefs. Aided by a Promising Ideas Tool and pedagogical supports designed for this intervention, students explored the concept of promisingness, judged the promisingness of their community ideas, and engaged in iterative cycles of idea refinement. Results indicated that students were capable of improving their understanding of promisingness and making promisingness judgments deemed sensible by domain experts. The conceptual understanding and epistemic beliefs displayed by students improved over the course of the intervention, and such improvement happened in tandem with students’ understanding of promisingness. The implications of this exploratory study and future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barman, C. R., Griffiths, A. K., & Okebukola, P. A. O. (1995). High school students’ concepts regarding food chains and food webs: A multinational study. International Journal of Science Education, 17(6), 775–782. doi:10.1080/0950069950170608.

    Article  Google Scholar 

  • Bereiter, C. (2002a). Design research for sustained innovation. Cognitive Studies, 9(3), 321–327.

    Google Scholar 

  • Bereiter, C. (2002b). Education and mind in the knowledge age. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bereiter, C. (2009). Innovation in the absence of principled knowledge: The case of the Wright Brothers. Creativity and Innovation Management, 18(3), 234–241. doi:10.1111/j.1467-8691.2009.00528.x.

    Article  Google Scholar 

  • Bereiter, C. (2012). Theory building and education for understanding. In M. Peters, T. Besley, A. Gibbons, B. Žarnić, & P. Ghiraldelli (Eds.), The encyclopaedia of educational philosophy and theory. Retrieved from http://eepat.net/doku.php?id=theory_building_and_education_for_understanding.

  • Bereiter, C., & Scardamalia, M. (1993). Surpassing ourselves: An inquiry into the nature and implications of expertise. Chicago, La Salle, IL: Open Court.

    Google Scholar 

  • Bereiter, C., & Scardamalia, M. (2003). Learning to work creatively with knowledge. In E. De Corte, L. Verschaffel, N. Entwistle, & J. van Merrienboer (Eds.), Powerful learning environments: Unravelling basic components and dimensions (pp. 55–68). Oxford: Pergamon.

    Google Scholar 

  • Bielaczyc, K. (2006). Designing social infrastructure: Critical issues in creating learning environments with technology. Journal of the Learning Sciences, 15(3), 301–329. doi:10.1207/s15327809jls1503_1.

    Article  Google Scholar 

  • Burnard, P. (1991). A method of analysing interview transcripts in qualitative research. Nurse Education Today, 11(6), 461–466. doi:10.1016/0260-6917(91)90009-Y.

    Article  Google Scholar 

  • Cano, F. (2005). Epistemological beliefs and approaches to learning: Their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75(2), 203–221. doi:10.1348/000709904X22683.

    Article  Google Scholar 

  • Carey, S., Scholnick, E. K., & Nelson, K. (1999). Sources of conceptual change. In E. K. Scholnick, K. Nelson, F. G. L. Huetwell, S. A. Gelman, & P. H. Miller (Eds.), Conceptual development: Piaget’s legacy (pp. 293–326). Mahwah, New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235–251. doi:1010.1207/s15326985ep2803_4.

    Article  Google Scholar 

  • Caswell, B., & Bielaczyc, K. (2002). Knowledge Forum: Altering the relationship between students and scientific knowledge. Education, Communication & Information, 1(3), 281–305. doi:10.1080/146363102753535240.

    Article  Google Scholar 

  • Chan, C. K. K., Burtis, P. J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1–40. doi:10.1207/s1532690xci1501_1.

    Article  Google Scholar 

  • Chen, B., Chuy, M., Resendes, M., Scardamalia, M., & Bereiter, C. (2011). Evaluation by grade 5 and 6 students of the promisingness of ideas in knowledge-building discourse. In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting computer-supported collaborative learning to policy and practice: CSCL2011 conference proceedings. Volume II—Short papers and posters (pp. 571–575). Hong Kong: International Society of the Learning Sciences.

    Google Scholar 

  • Chen, B., & Hong, H.-Y. (2016). Schools as knowledge-building organizations: Thirty years of design research. Educational Psychologist, 51(2), 266–288. doi:10.1080/00461520.2016.1175306.

    Article  Google Scholar 

  • Chen, B., Scardamalia, M., & Bereiter, C. (2015). Advancing knowledge building discourse through judgments of promising ideas. International Journal of Computer-Supported Collaborative Learning, 10(4), 345–366. doi:10.1007/s11412-015-9225-z.

    Article  Google Scholar 

  • Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43. doi:10.1016/0959-4752(94)90017-5.

    Article  Google Scholar 

  • Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141–167. doi:10.1080/00461520.2011.587722.

    Article  Google Scholar 

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218. doi:10.1002/sce.10001.

    Article  Google Scholar 

  • Chuy, M., Scardamalia, M., Bereiter, C., Prinsen, F., Resendes, M., Messina, R., et al. (2010). Understanding the nature of science and scientific progress: A theory-building approach. Canadian Journal of Learning and Technology/La Revue canadienne de l’apprentissage et de la technologie, 36(1), 1–21.

    Google Scholar 

  • Chuy, M., Zhang, J., Resendes, M., Scardamalia, M., & Bereiter, C. (2011). Does contributing to a knowledge building dialogue lead to individual advancement of knowledge? In H. Spada, G. Stahl, N. Miyake, & N. Law (Eds.), Connecting computer-supported collaborative learning to policy and practice: CSCL2011 conference proceedings. Volume I—Long papers (pp. 57–63). International Society of the Learning Sciences.

  • Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15–42. doi:10.1207/s15327809jls1301_2.

    Article  Google Scholar 

  • Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186–204. doi:10.1016/j.cedpsych.2004.01.004.

    Article  Google Scholar 

  • Dillon, J. T. (1982). Problem finding and solving. The Journal of Creative Behavior, 16(2), 97–111. doi:10.1002/j.2162-6057.1982.tb00326.x.

    Article  Google Scholar 

  • DiSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. Pufall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. doi:10.1080/09500690305016.

    Article  Google Scholar 

  • Edelson, D. C. (2002). Design research: What we learn when we engage in design. Journal of the Learning Sciences, 11(1), 105–121. doi:10.1207/S15327809JLS1101_4.

    Article  Google Scholar 

  • Gardner, H. (1994). More on private intuitions and public symbol systems. Creativity Research Journal, 7(3–4), 265–275. doi:10.1080/10400419409534534.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140. doi:10.3102/00346543067001088.

    Article  Google Scholar 

  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337. doi:10.1002/sce.3730770306.

    Article  Google Scholar 

  • Laferriere, T., Law, N., & Montané, M. (2012). An international knowledge building network for sustainable curriculum and pedagogical innovation. International Education Studies, 5(3), 148–160. doi:10.5539/ies.v5n3p148.

    Article  Google Scholar 

  • Lam, I. C. K., & Chan, C. K. K. (2008). Fostering epistemological beliefs and conceptual change in chemistry using knowledge building. Proceedings of the 8th international conference on international conference for the learning sciences (Vol. 1, pp. 461–468). Utrecht, The Netherlands: International Society of the Learning Sciences.

    Google Scholar 

  • Lee, V. Y. A., Tan, S. C., & Chee, J. K. K. (2016). Idea Identification and Analysis (I2A): A search for sustainable promising ideas within knowledge-building discourse. In C. K. Looi, J. L. Polman, U. Cress, & P. Reimann (Eds.), Transforming learning, empowering learners: The international conference of the learning sciences (ICLS) (Vol. 1, pp. 88–97). Singapore: The International Society of the Learning Sciences.

  • Linn, M. C. (2008). Teaching for conceptual change: Distinguish or extinguish ideas. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 694–722). New York, NY: Routledge.

    Google Scholar 

  • Mason, L., & Gava, M. (2007). Effects of epistemological beliefs and learning text structure on conceptual change. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 165–196). New York, NY, USA: Elsevier Science.

    Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

    Google Scholar 

  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. doi:10.1126/science.1183944.

    Article  Google Scholar 

  • Özdemir, G., & Clark, D. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3(4), 351–361.

    Google Scholar 

  • Perry, W. G. (1970). Forms of intellectual and ethical development in the college years. New York: Academic Press.

    Google Scholar 

  • Phillips, D. C. (2014). Research in the hard sciences, and in very hard “softer” domains. Educational Researcher, 43(1), 9–11. doi:10.3102/0013189X13520293.

    Article  Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. doi:10.1002/sce.3730660207.

    Article  Google Scholar 

  • Promisingness. (n.d.). Oxford Dictionaries. Retrieved from http://www.oxforddictionaries.com/definition/english/promisingness

  • Rosé, C. P., Wang, Y.-C., Cui, Y., Arguello, J., Stegmann, K., Weinberger, A., et al. (2008). Analyzing collaborative learning processes automatically: Exploiting the advances of computational linguistics in computer-supported collaborative learning. International Journal of Computer-Supported Collaborative Learning, 3(3), 237–271. doi:10.1007/s11412-007-9034-0.

    Article  Google Scholar 

  • Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith (Ed.), Liberal education in a knowledge society (pp. 67–98). Chicago, IL: Open Court.

    Google Scholar 

  • Scardamalia, M. (2004). CSILE/Knowledge Forum. In A. Kovalchick & K. Dawson (Eds.), Education and technology: An encyclopedia (pp. 183–192). Santa Barbara, CA: ABC-CLIO.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (1991). Higher levels of agency for children in knowledge building: A challenge for the design of new knowledge media. Journal of the Learning Sciences, 1(1), 37–68. doi:10.1207/s15327809jls0101_3.

    Article  Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2003). Knowledge Building. In J. W. Guthrie (Ed.), Encyclopedia of education (2nd ed., Vol. 17, pp. 1370–1373). New York, NY: Macmillan Reference.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2007). Fostering communities of learners and knowledge building: An interrupted dialogue. In J. C. Campione, K. E. Metz, & A. S. Palinscar (Eds.), Children’s learning in the laboratory and in the classroom: Essays in honor of Ann Brown (pp. 197–212). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (2nd ed., pp. 397–417). New York, New York, USA: Cambridge University Press.

    Chapter  Google Scholar 

  • Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498–504. doi:10.1037/0022-0663.82.3.498.

    Article  Google Scholar 

  • Stathopoulou, C., & Vosniadou, S. (2007). Exploring the relationship between physics-related epistemological beliefs and physics understanding. Contemporary Educational Psychology, 32(3), 255–281. doi:10.1016/j.cedpsych.2005.12.002.

    Article  Google Scholar 

  • Treffinger, D. J. (1995). Creative Problem Solving: Overview and educational implications. Educational Psychology Review, 7(3), 301–312. doi:10.1007/BF02213375.

    Article  Google Scholar 

  • van Aalst, J. (2009). Distinguishing knowledge-sharing, knowledge-construction, and knowledge-creation discourses. International Journal of Computer-Supported Collaborative Learning, 4(3), 259–287. doi:10.1007/s11412-009-9069-5.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535–585. doi:10.1016/0010-0285(92)90018-W.

    Article  Google Scholar 

  • Vosniadou, S., & Kollias, V. (2003). Using collaborative, computer-supported, model building to promote conceptual change in science. In E. D. Corte (Ed.), Powerful learning environments: Unravelling basic components and dimensions (pp. 181–196). Pergamon: Emerald Group Publishing.

    Google Scholar 

  • Zhang, J., Scardamalia, M., Lamon, M., Messina, R., & Reeve, R. (2007). Socio-cognitive dynamics of knowledge building in the work of 9- and 10-year-olds. Educational Technology Research and Development, 55(2), 117–145. doi:10.1007/s11423-006-9019-0.

    Article  Google Scholar 

Download references

Acknowledgments

The author’s travel to the research site was funded by the School of Graduate Studies Travel Grant at the University of Toronto. The author thanks Jennifer González Abril, Fernando Díaz del Castillo, James D. Slotta, and the Institute for Knowledge Innovation and Technology for their generous support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B. Fostering scientific understanding and epistemic beliefs through judgments of promisingness. Education Tech Research Dev 65, 255–277 (2017). https://doi.org/10.1007/s11423-016-9467-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-016-9467-0

Keywords

Navigation