Skip to main content
Log in

Perceptual factors and learning in digital environments

  • Research Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine if student understanding of new material could be promoted by manipulating the perceptual factors experienced at the time of learning. It was hypothesized that the thematic relevance of perceptual factors would be a significant contributor to learner understanding. To test this hypothesis, one hundred seventy-three (n = 173) first and second grade students with limited prior knowledge were introduced to multiplication using a virtual manipulative environment. While interacting with the environment, participants encountered varied levels of thematic relevance in the audio and bodily-kinesthetic modalities. The audio perceptual factor varied what learners heard while the kinesthetic perceptual factor varied how learners moved. The results show that changes in the sensory experience at the time of learning have a “bottom up” impact on learners’ ability to process new content. Evidence also suggests that the thematic relevance of perceptual factors mediates learner understanding in different ways over different time scales. The study concludes with a discussion of design-related issues and suggestions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (Vol. 2, pp. 358–376). New York: Cambridge University Press.

  • Alibali, M. W. (2005). Gesture in spatial cognition: Expressing, communicating, and thinking about spatial information. Spatial Cognition & Computation, 5(4), 307–331. doi:10.1207/s15427633scc0504_2.

    Article  Google Scholar 

  • Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247–286.

    Article  Google Scholar 

  • Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563–576. doi:10.1162/jocn.2007.19.4.563.

    Article  Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. The Behavioral and Brain Sciences, 22(4), 637–660.

    Article  Google Scholar 

  • Barsalou, L. W., Kyle Simmons, W., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91.

    Article  Google Scholar 

  • Black, J. B., Segal, A., Vitale, J., & Fadjo, C. (2011). Embodied Cognition and Learning Environment Design. In D. H. Jonassen & S. Land (Eds.), Theoretical foundations of learning environments (2nd ed., pp. 198–223). New York: Routledge.

    Google Scholar 

  • Boucheix, J. M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123–135. doi:10.1016/j.learninstruc.2009.02.015.

    Article  Google Scholar 

  • Carlson, J. R., & Zmud, R. W. (1999). Channel expansion theory and the experiential nature of media richness perceptions. Academy of Management Journal, 42(2), 153–170. doi:10.2307/257090.

    Article  Google Scholar 

  • Chan, M.S., & Black, J.B. (2006). Direct-manipulation animation: Incorporating the haptic channel in the learning process to support middle school students in science learning and mental model acquisition. In Proceedings of the 7th international conference on Learning sciences. International Society of the Learning Sciences

  • Chao, K.-J., Huang, H.-W., Fang, W.-C., & Chen, N.-S. (2013). Embodied play to learn: Exploring Kinect-facilitated memory performance. British Journal of Educational Technology, 44(5), E151–E155. doi:10.1111/bjet.12018.

    Article  Google Scholar 

  • Clark, F. B., & Kamii, C. (1996). Identification of multiplicative thinking in children in grades 1-5. Journal for Research in Mathematics Education, 27(1), 41–51.

    Article  Google Scholar 

  • Collins, A., & Halverson, R. (2009). Rethinking education in the age of technology: The digital revolution and schooling in America. New York: Teachers College Press.

    Google Scholar 

  • Costigan, F. A., Light, J. C., & Newell, K. M. (2012). Factors affecting computer mouse use for young children: implications for AAC. Augmentative and Alternative Communication, 28(2), 85–95. doi:10.3109/07434618.2012.679235.

    Article  Google Scholar 

  • Daft, R. L., Lengel, R. H., & Trevino, L. K. (1987). Message equivocality, media selection, and manager performance: Implications for information systems. MIS Quarterly, 11(3), 355–366. doi:10.2307/248682.

    Article  Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the Sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455–479. doi:10.1080/02643290442000310.

    Article  Google Scholar 

  • Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15(4), 313–331. doi:10.1016/j.learninstruc.2005.07.001.

    Article  Google Scholar 

  • Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272. doi:10.1111/j.1467-9280.2009.02297.x.

    Article  Google Scholar 

  • Han, I., & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. Computers & Education, 57(4), 2281–2290. doi:10.1016/j.compedu.2011.06.012.

    Article  Google Scholar 

  • Homer, B. D., Kinzer, C. K., Plass, J. L., Letourneau, S. M., Hoffman, D., Bromley, M., & Kornak, Y. (2014). Moved to learn: The effects of interactivity in a Kinect-based literacy game for beginning readers. Computers & Education, 74, 37–49. doi:10.1016/j.compedu.2014.01.007.

    Article  Google Scholar 

  • Jenkins, J. R. (1968). Effects of incidental cues and encoding strategies on paired-associate learning. Journal of Educational Psychology, 59(6), 410–413. doi:10.1037/h0026446.

    Article  Google Scholar 

  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. (2008). Transfer of mathematical knowledge: the portability of genetic instantiations. Child Development Perspectives, 3(3), 151–155.

    Article  Google Scholar 

  • Kennedy, G. (2004). Promoting cognition in multimedia interactivity research. Journal of Interactive Learning Research, 15(1), 43–61.

    Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minmal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Kontra, C., Goldin-Meadow, S., & Beilock, S. L. (2012). Embodied learning across the life span. Topics in Cognitive Science, 4(4), 731–739. doi:10.1111/j.1756-8765.2012.01221.x.

    Article  Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment: six precepts for research on embodied learning and mixed reality. Educational Researcher, 42(8), 445–452. doi:10.3102/0013189X13511661.

    Article  Google Scholar 

  • Lowe, R. K. (1999). Extracting information from an animation during complex visual learning. European Journal of Psychology of Education, 14(2), 225–244. doi:10.1007/BF03172967.

    Article  Google Scholar 

  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52. doi:10.1207/S15326985EP3801_6.

    Article  Google Scholar 

  • Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19(3), 309–326. doi:10.1007/s10648-007-9047-2.

    Article  Google Scholar 

  • Moyer, P., Bolyard, J., & Spikell, M. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.

    Google Scholar 

  • Nathan, M. J. (2012). Rethinking formalisms in formal education. Educational Psychologist, 47(2), 125–148. doi:10.1080/00461520.2012.667063.

    Article  Google Scholar 

  • Rapp, D.N., & Kurby, C.A. (2008). The “ins” and “outs” of learning: internal representations and external visualizations. In J. K. Gildert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (Vol. 3, pp. 9–27). Netherlands: Springer. doi:10.1007/978-1-4020-5267-5

  • Reimer, K., & Moyer, P. (2005). Third-graders learn about fractions using virtual manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5–25.

    Google Scholar 

  • Resnick, M. (2002). Rethinking learning in the digital age. In G. S. Kirkman, P. K. Cornelius, J. D. Sachs, & K. Schwab (Eds.), Global information technology report, 2002-20032: Readiness for the networked world (pp. 32–37). New York: Oxford University Press.

    Google Scholar 

  • Royer, J.M., Mestre, J.P., & Dufresne, R.J. (2005). Framing the transfer problem. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (p. 393). Charlotte: Information Age Publishing

  • Schnotz, W., & Lowe, R. (2003). External and internal representations in multimedia learning. Learning and Instruction, 13(2), 117–123. doi:10.1016/S0959-4752(02)00015-4.

    Article  Google Scholar 

  • Sheu, F.-R., & Chen, N.-S. (2014). Taking a signal: A review of gesture-based computing research in education. Computers & Education, 78, 268–277. doi:10.1016/j.compedu.2014.06.008.

    Article  Google Scholar 

  • St-Laurent, M., Moscovitch, M., Jadd, R., & Mcandrews, M. P. (2014). The perceptual richness of complex memory episodes is compromised by medial temporal lobe damage. Hippocampus, 24(January), 560–576. doi:10.1002/hipo.22249.

    Article  Google Scholar 

  • Swaak, J., & De Jong, T. (2001). Discovery simulations and the assessment of intuitive knowledge. Journal of Computer Assisted learning, 17(3), 284–294. doi:10.1046/j.0266-4909.2001.00183.x.

    Article  Google Scholar 

  • Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.

    Article  Google Scholar 

  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262. doi:10.1006/ijhc.1017.

    Article  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungoh Paek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paek, S., Hoffman, D.L. & Black, J.B. Perceptual factors and learning in digital environments. Education Tech Research Dev 64, 435–457 (2016). https://doi.org/10.1007/s11423-016-9427-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-016-9427-8

Keywords

Navigation