Skip to main content

Advertisement

Log in

PI3-kinase is essential for ADP-stimulated integrin αIIbβ3-mediated platelet calcium oscillation, implications for P2Y receptor pathways in integrin αIIbβ3-initiated signaling cross-talks

  • Published:
Journal of Biomedical Science

Summary

Phosphatidylinositol 3-kinase (PI3K) pathway is important for platelet activation. Recent studies showed that PI3K and oscillative calcium could cross talk to each other and positively regulate integrin α IIbβ3-mediated outside-in signaling. However, the mechanism of this feedback regulation remains to be further characterized. Here we found that treatments of both PI3K inhibitor wortmannin and P2Y1 inhibitor A3P5P could inhibit granular secretion in platelets. Additionally, when RGD-substrate adherent platelets were treated with the ADP scavenger apyrase to deplete the granular-released ADP, their attachments in engaging with substrates became looser and the frequency of calcium oscillation decreased. Since it is known that ADP stimulates the PI3K and calcium signal primarily through P2Y12 and P2Y1 receptors respectively, our data indicated that integrin αIIbβ3 downstream PI3K and calcium activation might be not completely coupled to integrin associated signaling complex, but in part through feedback stimulation by granular released ADP. Our data indicates the important roles of PI3K and granular released ADP in coordinating the feedback regulations in integrin αIIbβ3-mediated platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun D.S., Lo S.J., Lin C.H., Yu M.S., Huang C.Y., Chen Y.F. and Chang H.H., Calcium oscillation and phosphatidylinositol 3-kinase positively-regulate integrin alphaIIbbeta3-mediated outside-in signaling. J. Biomed. Sci. 12: in press, 2005

  2. Toker A, Cantley LC (1997) Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387: 673–676

    Article  PubMed  CAS  Google Scholar 

  3. Rittenhouse SE (1996) Phosphoinositide 3-kinase activation and platelet function. Blood 88: 4401–4414

    PubMed  CAS  Google Scholar 

  4. Chang AY, Chan JY, Chan SH (2003) Differential distribution of nitric oxide synthase isoforms in the rostral ventrolateral medulla of the rat. J Biomed Sci 10: 285–291

    Article  PubMed  CAS  Google Scholar 

  5. Chang HH, Chang CP, Chang JC, Dung SZ, Lo SJ (1997) Application of Recombinant Rhodostomin in Studying Cell Adhesion. J Biomed Sci 4: 235–243

    Article  PubMed  CAS  Google Scholar 

  6. Guinebault C, Payrastre B, Racaud-Sultan C, Mazarguil H, Breton M, Mauco G, Plantavid M, Chap H (1995) Integrin-dependent translocation of phosphoinositide 3-kinase to the cytoskeleton of thrombin-activated platelets involves specific interactions of p85 alpha with actin filaments and focal adhesion kinase. J Cell Biol 129: 831–842

    Article  PubMed  CAS  Google Scholar 

  7. Sultan C, Plantavid M, Bachelot C, Grondin P, Breton M, Mauco G, Levy-Toledano S, Caen JP, Chap H (1991) Involvement of platelet glycoprotein IIb-IIIa (alpha IIb-beta 3 integrin) in thrombin-induced synthesis of phosphatidylinositol 3′,4′-bisphosphate. J Biol Chem 266: 23554–23557

    PubMed  CAS  Google Scholar 

  8. Kovacsovics TJ, Bachelot C, Toker A, Vlahos CJ, Duckworth B, Cantley LC, Hartwig JH (1995) Phosphoinositide 3-kinase inhibition spares actin assembly in activating platelets but reverses platelet aggregation. J Biol Chem 270: 11358–11366

    Article  PubMed  CAS  Google Scholar 

  9. Dorsam RT, Kunapuli SP (2004) Central role of the P2Y12 receptor in platelet activation. J Clin Invest 113: 340–345

    Article  PubMed  CAS  Google Scholar 

  10. Moake JL, Turner NA, Stathopoulos NA, Nolasco L, Hellums JD (1988) Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 71: 1366–1374

    PubMed  CAS  Google Scholar 

  11. Gachet C (2001) ADP receptors of platelets and their inhibition. Thromb Haemost 86: 222–232

    PubMed  CAS  Google Scholar 

  12. Woulfe D, Yang J, Brass L (2001) ADP and platelets: the end of the beginning. J Clin Invest 107: 1503–1505

    Article  PubMed  CAS  Google Scholar 

  13. Hardy AR, Jones ML, Mundell SJ, Poole AW (2004) Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 104: 1745–1752

    Article  PubMed  CAS  Google Scholar 

  14. Mazzucato M, Cozzi MR, Pradella P, Ruggeri ZM, De Marco L (2004) Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under high flow. Blood 104: 3221–3227

    Article  PubMed  CAS  Google Scholar 

  15. Chang HH, Hu ST, Huang TF, Chen SH, Lee YH, Lo SJ (1993) Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190: 242–249

    Article  PubMed  CAS  Google Scholar 

  16. Chang HH, Lin CH, Lo SJ (1999) Recombinant rhodostomin substrates induce transformation and active calcium oscillation in human platelets. Exp Cell Res 250: 387–400

    Article  PubMed  CAS  Google Scholar 

  17. Chang HH, Shyu HF, Wang YM, Sun DS, Shyu RH, Tang SS, Huang YS (2002) Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen. J Infect Dis 186: 743–751

    Article  PubMed  CAS  Google Scholar 

  18. Chang HH, Tsai WJ, Lo SJ (1997) Glutathione S-transferase-rhodostomin fusion protein inhibits platelet aggregation and induces platelet shape change. Toxicon 35: 195–204

    Article  PubMed  CAS  Google Scholar 

  19. Chang Y, Chen TL, Wu GJ, Hsiao G, Shen MY, Lin KH, Chou DS, Lin CH, Sheu JR (2004) Mechanisms involved in the antiplatelet activity of ketamine in human platelets. J Biomed Sci 11: 764–772

    Article  PubMed  CAS  Google Scholar 

  20. Wassmer SC, Lepolard C, Traore B, Pouvelle B, Gysin J, Grau GE (2004) Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. J Infect Dis 189: 180–189

    Article  PubMed  CAS  Google Scholar 

  21. Heilmann C, Niemann S, Sinha B, Herrmann M, Kehrel BE, Peters G (2004) Staphylococcus aureus fibronectin-binding protein (FnBP)-mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB. J Infect Dis 190: 321–329

    Article  PubMed  CAS  Google Scholar 

  22. Hsiao G, Shen MY, Chou DS, Lin CH, Chen TF, Sheu JR (2004) Involvement of the antiplatelet activity of magnesium sulfate in suppression of protein kinase C and the Na+/H+ exchanger. J Biomed Sci 11: 19–26

    PubMed  CAS  Google Scholar 

  23. Hsiao G, Shen MY, Fang CL, Chou DS, Lin CH, Chen TF, Sheu JR (2003) Morphine-potentiated platelet aggregation in in vitro and platelet plug formation in in vivo experiments. J Biomed Sci 10: 292–301

    Article  PubMed  CAS  Google Scholar 

  24. Kau J.H., Sun D.S., TW J., SH F., Huang H.H., Lin H.C. and Chang H.H., Anti-platelet activities of anthrax lethal toxin are associated with suppressed p42/44 and p38 MAPK pathways in the platelets. J. Infect. Dis. In press: 2005.

  25. Chang HH, Lo SJ (1998) Full-spreading platelets induced by the recombinant rhodostomin are via binding to integrins and correlated with FAK phosphorylation. Toxicon 36: 1087–1099

    Article  PubMed  CAS  Google Scholar 

  26. Fan SS, Chen MS, Lin JF, Chao WT, Yang VC (2003) Use of gain-of-function study to delineate the roles of crumbs in Drosophila eye development. J Biomed Sci 10: 766–773

    PubMed  Google Scholar 

  27. Mak NK, Kok TW, Wong RN, Lam SW, Lau YK, Leung WN, Cheung NH, Huang DP, Yeung LL, Chang CK (2003) Photodynamic activities of sulfonamide derivatives of porphycene on nasopharyngeal carcinoma cells. J Biomed Sci 10: 418–429

    Article  PubMed  CAS  Google Scholar 

  28. Gorka M, Godlewski MM, Gajkowska B, Wojewodzka U, Motyl T (2004) Kinetics of Smac/DIABLO release from mitochondria during apoptosis of MCF-7 breast cancer cells. Cell Biol Int 28: 741–754

    Article  PubMed  CAS  Google Scholar 

  29. Lee KG, Miller T, Anastassov I, Cohen WD (2004) Shape transformation and cytoskeletal reorganization in activated non-mammalian thrombocytes. Cell Biol Int 28: 299–310

    Article  PubMed  CAS  Google Scholar 

  30. Mascari LM, Ross JM (2003) Quantification of staphylococcal-collagen binding interactions in whole blood by use of a confocal microscopy shear-adhesion assay. J Infect Dis 188: 98–107

    Article  PubMed  Google Scholar 

  31. Oertel A, Holzinger A, Lutz-Meindl U (2003) Involvement of myosin in intracellular motility and cytomorphogenesis in Micrasterias. Cell Biol Int 27: 977–986

    Article  PubMed  CAS  Google Scholar 

  32. Yates-Siilata KE, Dahms TE, Webster RO, Heuertz RM (2004) C-reactive protein increases F-actin assembly and cortical distribution with resultant loss of lamellipod formation in human neutrophils. Cell Biol Int 28: 33–39

    Article  PubMed  CAS  Google Scholar 

  33. Chang HH, Kau JH, Lo SJ, Sun DS (2003) Cell-adhesion and morphological changes are not sufficient to support anchorage-dependent cell growth via non-integrin-mediated attachment. Cell Biol Int 27:123–133

    Article  PubMed  CAS  Google Scholar 

  34. Tseng YL, Peng HC, Huang TF (2004) Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci 11: 683–691

    Article  PubMed  CAS  Google Scholar 

  35. Kao YS, Fong JC (2004) Thapsigargin and EGTA inhibit endothelin-1-induced glucose transport. J Biomed Sci 11: 206–213

    Article  PubMed  CAS  Google Scholar 

  36. Wang JP, Tsai JJ, Chen YS, Hsu MF (2005) Stimulation of intracellular Ca2+ elevation in neutrophils by thiol-oxidizing phenylarsine oxide. Biochem Pharmacol 69: 1225–1234

    Article  PubMed  CAS  Google Scholar 

  37. Yang CM, Chien CS, Ma YH, Hsiao LD, Lin CH, Wu C (2003) Bradykinin B2 receptor-mediated proliferation via activation of the Ras/Raf/MEK/MAPK pathway in rat vascular smooth muscle cells. J Biomed Sci 10: 208–218

    Article  PubMed  CAS  Google Scholar 

  38. Carroll RC, Butler RG, Morris PA, Gerrard JM, Separable assembly of platelet pseudopodal and contractile cytoskeletons. Cell 30: 385–393(1982)

    Article  PubMed  CAS  Google Scholar 

  39. Sun DS, Chang HH (2003) Differential regulation of JNK in caspase-3-mediated apoptosis of MPP(+)-treated primary cortical neurons. Cell Biol Int 27: 769–777

    Article  PubMed  CAS  Google Scholar 

  40. Ten Cate H (2003) Trombocytopenia: one of the markers of disseminated intravascular coagulation. Pathophysiol Haemost Thromb 33: 413–416

    Article  PubMed  Google Scholar 

  41. Gibbins JM (2004) Platelet adhesion signalling and the regulation of thrombus formation. J Cell Sci 117: 3415–3425

    Article  PubMed  CAS  Google Scholar 

  42. Huang TF (1998) What have snakes taught us about integrins?. Cell Mol Life Sci 54: 527–540

    Article  PubMed  CAS  Google Scholar 

  43. Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115: 527–537

    Article  PubMed  CAS  Google Scholar 

  44. Saeed SA, Rasheed H, Fecto FA, Achakzai MI, Ali R, Connor JD, Gilani AU (2004) Signaling mechanisms mediated by G-protein coupled receptors in human platelets. Acta Pharmacol Sin 25: 887–892

    PubMed  CAS  Google Scholar 

  45. Taylor CW (2002) Controlling calcium entry. Cell 111: 767–769

    Article  PubMed  CAS  Google Scholar 

  46. Bleasdale JE, Thakur NR, Gremban RS, Bundy GL, Fitzpatrick FA, Smith RJ, Bunting S (1990) Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils. J Pharmacol Exp Ther 255: 756–768

    PubMed  CAS  Google Scholar 

  47. Kageyama M, Mori T, Yanagisawa T, Taira N (1991) Is staurosporine a specific inhibitor of protein kinase C in intact porcine coronary arteries?. J Pharmacol Exp Ther 259: 1019–1026

    PubMed  CAS  Google Scholar 

  48. Hartwig JH, Kung S, Kovacsovics T, Janmey PA, Cantley LC, Stossel TP, Toker A (1996) D3 phosphoinositides and outside-in integrin signaling by glycoprotein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by phorbol 12-myristate 13-acetate. J Biol Chem 271: 32986–32993

    Article  PubMed  CAS  Google Scholar 

  49. Curtis ASG (1964) The mechanism of adhesion of cells to glass. J Cell Biol 20: 199–215

    Article  PubMed  CAS  Google Scholar 

  50. Heemskerk JW, Vis P, Feijge MA, Hoyland J, Mason WT, Sage SO (1993) Roles of phospholipase C and Ca(2+)-ATPase in calcium responses of single, fibrinogen-bound platelets. J Biol Chem 268: 356–363

    PubMed  CAS  Google Scholar 

  51. Jenks BG, Roubos EW, Scheenen WJ (2003) Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. Gen Comp Endocrinol 131: 209–219

    Article  PubMed  CAS  Google Scholar 

  52. Shvartsman SY (2002) Shooting from the hip: spatial control of signal release by intracellular waves. Proc Natl Acad Sci U S A 99: 9087–9089

    Article  PubMed  CAS  Google Scholar 

  53. Goncalves I, Hughan SC, Schoenwaelder SM, Yap CL, Yuan Y, Jackson SP (2003) Integrin alpha IIb beta 3-dependent calcium signals regulate platelet-fibrinogen interactions under flow. Involvement of phospholipase C gamma 2. J Biol Chem 278: 34812–34822

    Article  PubMed  CAS  Google Scholar 

  54. Haimovich B, Kaneshiki N, Ji P (1996) Protein kinase C regulates tyrosine phosphorylation of pp125FAK in platelets adherent to fibrinogen. Blood 87: 152–161

    PubMed  CAS  Google Scholar 

  55. Haimovich B, Lipfert L, Brugge JS, Shattil SJ (1993) Tyrosine phosphorylation and cytoskeletal reorganization in platelets are triggered by interaction of integrin receptors with their immobilized ligands. J Biol Chem 268: 15868–15877

    PubMed  CAS  Google Scholar 

  56. Heraud JM, Racaud-Sultan C, Gironcel D, Albiges-Rizo C, Giacomini T, Roques S, Martel V, Breton-Douillon M, Perret B, Chap H (1998) Lipid products of phosphoinositide 3-kinase and phosphatidylinositol 4′,5′-bisphosphate are both required for ADP-dependent platelet spreading. J Biol Chem 273: 17817–17823

    Article  PubMed  CAS  Google Scholar 

  57. Mazzucato M, Pradella P, Cozzi MR, De Marco L, Ruggeri ZM (2002) Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100: 2793–2800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Chao-Zong Liu of the Institute of Pharmacology and Toxicology, and Dr. Hui-Chun Li of the Biochemistry Department, Tzu-Chi University, Hualien, Taiwan, R.O.C., for their help with the manuscript. This work was supported by the Tzu-Chi University (TCMRC90104; 61030020; 61040020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Hou Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, DS., Lo, S.J., Tsai, WJ. et al. PI3-kinase is essential for ADP-stimulated integrin αIIbβ3-mediated platelet calcium oscillation, implications for P2Y receptor pathways in integrin αIIbβ3-initiated signaling cross-talks. J Biomed Sci 12, 937–948 (2005). https://doi.org/10.1007/s11373-005-9016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-005-9016-z

Keywords

Navigation