Skip to main content
Log in

Thapsigargin and EGTA inhibit endothelin-1-induced glucose transport

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

We have previously demonstrated that ET-1 may enhance glucose transport in 3T3-L1 adipocytes, secondarily to its stimulatory effect on GLUT1 gene expression by a mitogen-activated protein kinase (MAPK)-dependent pathway. In the present study, we further tested the involvement of Ca2+ in glucose uptake in response to ET-1. Among a variety of Ca2+-related agents tested, EGTA and thapsigargin were found to suppress both the glucose uptake and intracellular Ca2+ mobilization induced by ET-1, as determined by Fura-2 analysis. However, a phospholipase C inhibitor, U73122, also eliminated the intracellular calcium mobilization induced by ET-1, but had no effect on ET-1-stimulated glucose uptake. The finding that neither EGTA nor thapsigargin had any influence on ET-1-induced MAPK activation implies that some mechanism downstream of MAPK activation is involved. Further investigation showed that both agents exerted global inhibitory effects on protein and RNA syntheses. Since both thapsigargin and EGTA may deplete endoplasmic reticulum (ER) Ca2+ stores, our results suggest that (1) ET-1-induced glucose transport is independent of ET-1's effect on Ca2+ mobilization and (2) depletion of ER Ca2+ stores per se may interfere with ET-1's effect on GLUT1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chou YC, Perng JC, Juan CC, Jang SY, Kwok CF, Chen WL, Fong JC, Ho LT. Endothelin-1 inhibits insulin-stimulated glucose uptake in isolated rat adipocytes. Biochem Biophys Res Commun 202:688–693;1994.

    Article  PubMed  Google Scholar 

  2. Chu CY, Kao YS, Fong JC. Nigericin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. J Cell Biochem 85:83–91;2002.

    Article  PubMed  Google Scholar 

  3. Donjerkovic D, Zhang L, Scott DW. Regulation of p27Kip1 accumulation in murine B-lymphoma cells: Role of c-Myc and calcium. Cell Growth Differ 10:695–704;1999.

    PubMed  Google Scholar 

  4. Fong JC. The effect of chronic fatty acid treatment on lipolysis in 3T3-L1 adipocytes. Biochem Biophys Res Commun 171:46–52;1990.

    Article  PubMed  Google Scholar 

  5. Fong JC, Chen CC, Liu D, Chai SP, Tu MS, Chu KY. Arachidonic acid stimulates the intrinsic activity of ubiquitous glucose transporter (GLUT1) in 3T3-L1 adipocytes by a protein kinase C-independent mechanism. Cell Signal 8:179–183;1996.

    PubMed  Google Scholar 

  6. Fong JC, Kao YS, Tsai H, Ho LT. Endothelin-1 increases glucose transporter glut1 mRNA accumulation in 3T3-L1 adipocytes by a mitogen-activated protein kinase-dependent pathway. Cell Signal 13:491–497;2001.

    PubMed  Google Scholar 

  7. Greber UF, Gerace L. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol 128:5–14;1995.

    Article  PubMed  Google Scholar 

  8. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450;1986.

    Google Scholar 

  9. Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci USA 78:4354–4357;1981.

    PubMed  Google Scholar 

  10. Highsmith RF, Pang DC, Rapoport RM. Endothelial cell-derived vasoconstrictors: Mechanisms of action in vascular smooth muscle. J Cardiovasc Pharmacol 13:S36-S44;1989.

    Google Scholar 

  11. Imamura T, Ishibashi KI, Dalle S, Ugi S, Olefsky JM. Endothelin-1-induced GLUT4 translocation is mediated via Gα(q/11) protein and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J Biol Chem 274:33691–33695;1999.

    PubMed  Google Scholar 

  12. Ishibashi KI, Imamura T, Sharma PM, Ugi S, Olefsky JM. The acute and chronic stimulatory effects of endothelin-1 on glucose transport are mediated by distinct pathways in 3T3-L1 adipocytes. Endocrinology 141:4623–4628;2000.

    Article  PubMed  Google Scholar 

  13. Juan CC, Fang VS, Huang YJ, Kwok CF, Hsu YP, Ho LT. Endothelin-1 induces insulin resistance in conscious rats. Biochem Biophys Res Commun 227:694–699;1996.

    PubMed  Google Scholar 

  14. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Mol Cell Biol 22:7405–7416;2002.

    Article  PubMed  Google Scholar 

  15. Kuemmerle JF, Murthy KS, Makhlouf GM. Agonist-activated, ryanodine-sensitive, IP3-insensitive Ca2+ release channels in longitudinal muscle of intestine. Am J Physiol 266:C1421-C1431;1994.

    PubMed  Google Scholar 

  16. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685;1970.

    Article  PubMed  Google Scholar 

  17. Muldoon LL, Enslen H, Rodland KD, Magun BE. Stimulation of Ca2+ influx by endothelin-1 is subject to negative feedback by elevated intracellular Ca2+. Am J Physiol 260:C1273-C1281;1991.

    PubMed  Google Scholar 

  18. Nambi P, Wu HL, Pullen M, Aiyar N, Bryan H, Elliott J. Identification of endothelin receptor subtypes in rat kidney cortex using subtype-selective ligands. Mol Pharmacol 42:336–339;1992.

    PubMed  Google Scholar 

  19. Resink TJ, Scott-Burden T, Buhler FR. Endothelin stimulates phospholipase C in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 157:1360–1368;1988.

    Article  PubMed  Google Scholar 

  20. Roden M, Vierhapper H, Liener K, Waldhause W. Endothelin-1-stimulated glucose production in vitro in the isolated perfused rat liver. Metabolism 41:290–295;1992.

    PubMed  Google Scholar 

  21. Sargeant RJ, Paquet Effect of insulin on the rates of synthesis and degradation of GLUT1 and GLUT4 glucose transporters in 3T3-L1 adipocytes. MR. Biochem J 290:913–919;1993.

    PubMed  Google Scholar 

  22. Scharff O, Foder B. Effect of trifluoperazine, compound 48/80, TMB-8 and verapamil on the rate of calmodulin binding to erythrocyte Ca2+-ATPase. Biochim Biophys Acta 772:29–36;1984.

    PubMed  Google Scholar 

  23. Serradeil-Le Gal C, Jouneaux C, Sanchez-Bueno A, Raufaste D, Roche B, Maffrand JP, Cobbold PH, Hanoune J, Lotersztajn S. Endothelin action in rat liver. Receptors, free Ca2+ oscillations, and activation of glycogenolysis. J Clin Invest 87:133–138;1991.

    PubMed  Google Scholar 

  24. Sudo Y, Mariash CN. Lowering glucose depletes a thapsigargin-sensitive calcium pool and inhibits transcription of the S14 gene. Endocrinology 137:4677–4684;1996.

    PubMed  Google Scholar 

  25. Takuwa N, Takuwa Y, Yanagisawa M, Yamashita K, Masaki T. A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J Biol Chem 264:7856–7861;1989.

    PubMed  Google Scholar 

  26. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470;1990.

    PubMed  Google Scholar 

  27. Tripiciano A, Palombi F, Ziparo E, Filippini A. Dual control of seminiferous tubule contractility mediated by ETA and ETB endothelin receptor subtypes. FASEB J 11:276–286;1997.

    PubMed  Google Scholar 

  28. Vigne P, Lazdunski M, Frelin C. The inotropic effect of endothelin-1 on rat atria involves hydrolysis of phosphatidylinositol. FEBS Lett 249:143–146;1989.

    PubMed  Google Scholar 

  29. Wu-Wong JR, Berg CE, Wang J, Chiou WJ, Fissel B. Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ETA receptor in 3T3-L1 adipocytes. J Biol Chem 274:8103–8110;1999.

    Article  PubMed  Google Scholar 

  30. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 322:411–415;1988.

    Article  Google Scholar 

  31. Yang XY, Fekete Z, Gardner J, Benevenia J, Aviv A. Endothelin mobilizes calcium and enhances glucose uptake in cultured human skeletal myoblasts and L6 myotubes. Hypertension 23:1075–1081;1994.

    PubMed  Google Scholar 

  32. Yorek M, Jaipaul N, Dunlap J, Bielefeldt K. Endothelin-stimulated Ca2+ mobilization by 3T3-L1 adipocytes is suppressed by tumor necrosis factor-α. Arch Biochem Biophys 361:241–251;1999.

    Article  PubMed  Google Scholar 

  33. Yule DI, Williams JA. U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem 267:13830–13835;1992.

    PubMed  Google Scholar 

  34. Zimmerman RS, Maymind M. Endothelin-1 decreases glucose, inhibits glucagon, and stimulates insulin release in the rat. Metabolism 44:1321–1325;1995.

    Article  PubMed  Google Scholar 

  35. Zimmerman RS, Maymind M. NG-methyl-L-arginine and somatostatin decrease glucose and insulin and block endothelin-1 (ET-1)-induced insulin release but not ET-1-induced hypoglycemia. Metabolism 44:1532–1535;1995.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, YS., Fong, J.C. Thapsigargin and EGTA inhibit endothelin-1-induced glucose transport. J Biomed Sci 11, 206–213 (2004). https://doi.org/10.1007/BF02256564

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256564

Key Words

Navigation