Skip to main content
Log in

Soil structure amelioration with quicklime and irrigation experiments in earth graves

  • Urban Soils and Sediments
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Air supply and soil moisture have significant impact on the decay time necessary for complete decomposition of an interred body. Concerning the general structure and hydraulic as well as pneumatic conditions, in many cases, a permeable refilled soil material surrounded by the undisturbed and less permeable soil outside the grave results in water ponding, less aerated conditions, and lower redox potential values within the grave. This reduces the decomposition speed or even leads to preservation of the entire body.

Materials and methods

In order to ascertain soil structural processes and hydraulic properties in an earth grave within the first year after burial, a monitoring of soil redox and matric potentials was realized in newly refilled artificial (empty) graves. We surveyed four variations: undisturbed reference soil, soil backfill in artificial grave, soil backfill in artificial grave amended with 20 kg CaO m−3, and grave base and walls strewed with CaO. In the fourth artificial grave (soil backfill only), irrigation experiments were conducted in order to simulate the effects of grave maintenance on soil water budget. Pore size distribution, air conductivity, and saturated hydraulic conductivity were measured on soil core samples from the variations. The monitoring was realized with redox sensors and tensiometers in 50- and 130-cm depth in all four variations.

Results and discussion

Soil structure disruption increased soil porosity but also favored saturation of the soil in context with precipitation events. Compared with the graves without amendment, the addition of quicklime resulted in higher air capacity and air permeability, saturated hydraulic conductivity, and a better-aerated (higher redox potentials) and less water-saturated soil. Non-recurring irrigation with 2.2, 4.4, and 8.9 mm did not affect the soil moisture in the 50- and 130-cm depth. Repeated irrigation with 8.9 mm on consecutive days led to persistent water saturation in the soil, especially in the 130-cm depth.

Conclusions

The disturbed soil structure in the cover layer of an earth grave is sensitive to settlement and, together with a tendency to the development of stagnic conditions, this can have negative impact on soil aeration in the grave. Addition of quicklime to the soil enhances crack development in the base and walls of the grave, stabilizes the soil fragments in the backfill, and prevents intensive settlement processes. This reduces water ponding and leads to a better aeration of the soil. Irrigation of earth graves should be reduced to a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahnberg H (2004) Effects of back pressure and strain rate used in triaxial testing of stabilized organic soils and clays. Geotech Test J 27:250–259

    Google Scholar 

  • Al-Mukhtar M, Khattab S, Alcover JF (2012) Microstructure and geotechnical properties of lime-treated expansive clayey soil. Eng Geol 139:17–27

    Article  Google Scholar 

  • Annabi M, Le Bissonnais Y, Le Villio-Poitrenaud M, Houot S (2011) Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric Ecosyst Environ 144:382–389

    Article  Google Scholar 

  • Baumgartl T, Horn R (1991) Effect of aggregate stability on soil compaction. Soil Tillage Res 19:203–213

    Article  Google Scholar 

  • Beckie HJ, Ukrainetz H (1996) Lime-amended acid soil has elevated pH 30 years later. Can J Soil Sci 76:59–61

    Article  CAS  Google Scholar 

  • Beese F, Meyer B, Pollehn J (1979) Veränderung des Scher- und Kompressionsverhaltens von Ap-Horizont-material aus Löß-Parabraunerden durch Kalkung. Z Pflanz Bodenkunde 142:245–257

    Article  CAS  Google Scholar 

  • HP Blume (1981) Exkursionsführer zur Jahrestagung der DBG und eines Internationalen Symposiums über bodenkundliche Probleme städtischer Verdichtungsräume in Berlin (West). Mitteilungen der DBG Bd.31

  • Briedis C, Sa JCD, Caires EF, Navarro JD, Inagaki TM, Boer A, Neto CQ, Ferreira AD, Canalli LB, Santos JB d (2012) Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma 170:80–88

    Article  CAS  Google Scholar 

  • Chan KY, Heenan DP (1999) Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci Soc Am J 63:1841–1844

    Article  CAS  Google Scholar 

  • Chaplain V, Defossez P, Delarue G, Roger-Estrade J, Dexter AR, Richard G, Tessier D (2011) Impact of lime and mineral fertilizers on mechanical strength for various soil pHs. Geoderma:167–168 360-368

  • Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:81–90

    Article  CAS  Google Scholar 

  • Cuisinier O, Auriol JC, Le Borgne T, Deneele D (2011) Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng Geol 123:187–193

    Article  Google Scholar 

  • Curtin D, Smillie GW (1986) Effects of liming on soil chemical characteristics and grass growth in laboratory and long-term field-amended soils .2. Growth of Italian ryegrass (Lolium-Multiflorum) and bentgrass (Agrostis-Tenuis). Plant Soil 95:23–31

    Article  CAS  Google Scholar 

  • Duncan NA, Bransden BE (1986) The effects on a restored soil caused by soil moving under different moisture contents. Appl Geogr 6:267–273

    Article  Google Scholar 

  • Ellies A, Hartge KH, Nissen J (1978) Effect of burnt lime on water regime of a soil formed on volcanic ashes in southern Chile (Trumao). Z Pflanz Bodenkunde 141:597–606

    Article  Google Scholar 

  • Fiedler HJ, Bergmann W (1955) Die Wirkung verschiedener Bodenstruktur-Verbesserungsmittel. Angew Chem-Ger Edit 67

  • Fleige H, Horn R, Blume H-P, Wetzel H (2002) Bodenkundliches Bewertungsverfahren zur Bestimmung des Eignungsgrades von Friedhöfen. Wasser und Boden 54:31–39

    CAS  Google Scholar 

  • Forbes SL, Stuart BH, Dent BB (2005) The effect of the burial environment on adipocere formation. Forensic Sci Int 154:24–34

    Article  Google Scholar 

  • Francis PB, Cruse RM (1983) Soil-water matric potential effects on aggregate stability. Soil Sci Soc Am J 47:578–581

    Article  Google Scholar 

  • Ghezzehei TA, Or D (2000) Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resour Res 36:367–379

    Article  Google Scholar 

  • Hartge KH, Horn R, Horton R, Bachmann J, Peth S (2016) Essential soil physics, vol 1. Schweizerbart Science Publishers, Stuttgart, p. 370

    Google Scholar 

  • Hartge KH, Ellies A (1976) Über die Wirkung von Branntkalk als Stabilisator von Verfüllungsmaterial in Drängräben. Zeitschrift für Kulturtechnik und Flurbereinigung 17

  • Hartge KH, Ellies A (1977) Mechanismen der Aggregatstabilisierung in einem Tonboden mittels Branntkalk. Geoderma 17:47–55

    Article  Google Scholar 

  • Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51:123–137

    Article  Google Scholar 

  • Horn R, Dexter AR (1989) Dynamics of soil aggregation in an irrigated desert loess. Soil Tillage Res 13:253–266

    Article  Google Scholar 

  • Horn R (1990) Aggregate characterization as compared to soil bulk properties. Soil Tillage Res 17:265–289

    Article  Google Scholar 

  • Horn R, Fleige H (2001) Bodenkundliche Anforderungen für die Erdbestattung. In: V. GFe (Hrsg) Friedhofsysteme - dem Menschen und der Umwelt zuliebe Schutz für Boden und Wasser, Berlin

  • Jaskulska I, Jaskulski D, Kobierski M (2014) Effect of liming on the change of some agrochemical soil properties in a long-term fertilization experiment. Plant Soil Environ 60:146–150

    CAS  Google Scholar 

  • Kaufmann M, Tobias S, Schulin R (2009) Development of the mechanical stability of a restored soil during the first 3 years of re-cultivation. Soil Tillage Res 103:127–136

    Article  Google Scholar 

  • Kodesova R, Rohoskova M, Zigova A (2009) Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia 64:550–554

    Article  Google Scholar 

  • Krummelbein J, Horn R, Raab T, Bens O, Huttl RF (2010) Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in eastern Germany. Soil Tillage Res 111:19–25

    Article  Google Scholar 

  • Kuncoro PH, Koga K, Satta N, Muto Y (2014) A study on the effect of compaction on transport properties of soil gas and water. II: soil pore structure indices. Soil Tillage Res 143:180–187

    Article  Google Scholar 

  • Macdonald RM (1979) Liming and the growth of a mixed population of soil bacteria. Soil Biol Biochem 11:633–636

    Article  Google Scholar 

  • Mamedov AI, Beckmann S, Huang C, Levy GJ (2007) Aggregate stability as affected by polyacrylamide molecular weight, soil texture, and water quality. Soil Sci Soc Am J 71:1909–1918

    Article  CAS  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    Article  Google Scholar 

  • Moore JD, Ouimet R, Duchesne L (2012) Soil and sugar maple response 15 years after dolomitic lime application. Forest Ecol Manag 281:130–139

    Article  Google Scholar 

  • Muller MM, Berg B (1988) Release of carbon and nitrogen from decomposing roots of red-clover as affected by liming of soil. Plant Soil 105:149–152

    Article  Google Scholar 

  • Pagels B, Fleige H, Horn R (2004) Endbericht zur Studie: Bodenbeschaffenheit und Zersetzungsproblematik auf Friedhöfen, Zentralverband deutsches Baugewerbe

  • Piccolo A, Mbagwu JSC (1999) Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Sci Soc Am J 63:1801–1810

    Article  CAS  Google Scholar 

  • Rajasekaran G, Rao SN (2002) Permeability characteristics of lime treated marine clay. Ocean Eng 29:113–127

    Article  Google Scholar 

  • CDFG S Rodgers, Dixon, N. (1996) Lime Stabilisation, 182 pp

  • Schaffer B, Stauber M, Muller R, Schulin R (2007) Changes in the macro-pore structure of restored soil caused by compaction beneath heavy agricultural machinery: a morphometric study. Eur J Soil Sci 58:1062–1073

    Article  CAS  Google Scholar 

  • Scheffer F, Kuntze H, Neuhaus P (1963) Quellen und Schrumpfen-Faktoren der Bodenstruktur und ihre Beeinflussung bei Marschböden. Z Pflanz Bodenkunde 103:210–219

    Article  Google Scholar 

  • Schjonning P, Thomsen IK, Moberg JP, de Jonge H, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils—I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89:177–198

    Article  Google Scholar 

  • Schmidt MG, Graw M (2002) Forschungsprojekt zur Problematik der Verwesung läuft im Schwarzwald Friedhofskultur 92:20–21

  • Scholz-Solbach K (2004) Thermische Effekte der tiefgründigen Bodenstabilisierung mit Branntkalk-Boden-Säulen, Bauhaus-Universität Weimar, Weimar

  • Stoltz G, Cuisinier O, Masrouri F (2012) Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil. Appl Clay Sci 61:44–51

    Article  CAS  Google Scholar 

  • Ubelaker DH, Zarenko KM (2011) Adipocere: what is known after over two centuries of research. Forensic Sci Int 208:167–172

    Article  CAS  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • van Genuchten MT, Leij FJ, Yates SR (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils. Robert S. Kerr Environmental Research Laboratory, Oklahoma, 93 pp

  • van Genuchten MT, Simunek JL, Leij FJ, Senja M (2005) Code for quantifying the hydraulic functions of unsaturated soils

  • Weinzierl W, Waldmann F (2002) Karte der Potenziellen Problemstandorte für Erdbestattungen in Baden-Württemberg. Wasser und Boden 54:4–7

    Google Scholar 

  • KJ Witt (2002) Zement - Kalk - Stabilisierung von Böden. Schriftenreihe Geotechnik Weimar Heft 7

  • Wourtsakis A (2002) Bodenkundliche und hydrogeologische Anforderungen für die Erdbestattung. In: Ehses H (Hrsg.), Konfliktfeld Friedhof. Geologisches Landesamt Rheinland-Pfalz, Mainz

  • Zimmermann I, Fleige H, Horn R (2014) Kartierung von Friedhofböden und Bewertung ihrer Verwesungs- und Filterleistung. Die Bodenkultur 65

Download references

Acknowledgments

The authors thank the German federal environment foundation (Deutsche Bundesstiftung Umwelt, DBU) for the funding of the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Zimmermann.

Additional information

Responsible editor: Fanghua Hao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, I., Fleige, H. & Horn, R. Soil structure amelioration with quicklime and irrigation experiments in earth graves. J Soils Sediments 16, 2514–2522 (2016). https://doi.org/10.1007/s11368-016-1509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1509-z

Keywords

Navigation